OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 4 — Feb. 16, 2009
  • pp: 2188–2197

Greatly enhanced slow and fast light in chirped-pulse semiconductor optical amplifiers: Theory and experiments

Bala Pesala, Forrest Sedgwick, Alexander V. Uskov, and Connie Chang-Hasnain  »View Author Affiliations

Optics Express, Vol. 17, Issue 4, pp. 2188-2197 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (309 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Chirped pulse scheme is shown to be highly effective to attain large tunable time shifts via slow and fast light for an ultra-short pulse through a semiconductor optical amplifier (SOA). We show for the first time that advance can be turned into delay by simply reversing the sign of the chirp. A large continuously tunable advance-bandwidth product (ABP) of 4.7 and delay-bandwidth product (DBP) of 4.0 are achieved for a negatively and positively chirped pulse in the same device, respectively. We show that the tunable time shift is a direct result of self-phase modulation (SPM). Theoretical simulation agrees well with experimental results. Further, our simulation results show that by proper optimization of the SOA and chirper design, a large continuously tunable DBP of 55 can be achieved.

© 2009 Optical Society of America

OCIS Codes
(230.1150) Optical devices : All-optical devices
(230.4320) Optical devices : Nonlinear optical devices

ToC Category:
Slow and Fast Light

Original Manuscript: November 21, 2008
Revised Manuscript: January 26, 2009
Manuscript Accepted: January 26, 2009
Published: February 3, 2009

Bala Pesala, Forrest G. Sedgwick, Alexander V. Uskov, and Connie Chang-Hasnain, "Greatly enhanced slow and fast light in chirped pulse semiconductor optical amplifiers: Theory and experiments," Opt. Express 17, 2188-2197 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. J. Chang-Hasnain, P. C. Ku, J. Kim and S. L. Chuang, "Variable Optical Buffer using Slow Light in Semiconductor Nanostructures," Proc. of the IEEE 91, 1884-1897 (2003). [CrossRef]
  2. R. W. Boyd and D. J. Gauthier, "Slow and Fast Light," Prog. Opt. 43, 497-530 (2002). [CrossRef]
  3. F. Ohman, K. Yvind and J. Mork, "Slow Light in a Semiconductor Waveguide for True-Time Delay Applications in Microwave Photonics," IEEE Photon. Techol. Lett. 19, 1145-1147 (2007). [CrossRef]
  4. L. V. Hau, S. E. Harris, Z. Dutton and C. H. Behroozi, " Light speed reduction to 17 meters per second in an ultracold atomic gas," Nature 397, 594-598 (1999). [CrossRef]
  5. M. S. Bigelow, N. N. Lepeshkin and R. W. Boyd, "Superluminal and slow light propagation in a room-temperature solid," Science 301, 200-202 (2003). [CrossRef] [PubMed]
  6. R. M. Camacho, M. V. Pack and J. Howell, "Wide-bandwidth, Tunable, Multiple-pulse-width optical delays using slow light in cesium vapor," Phys. Rev. Lett. 98, 153601 (2007). [CrossRef] [PubMed]
  7. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schqeinsberg, D. J. Gautheir, R. W. Boyd and A. L. Gaeta, "Tunable all-optical delays via brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005). [CrossRef] [PubMed]
  8. T. Baba, "Toward photonic crystal optical buffer," CLEO/QELS, San Jose, CA, CWH1 (2008).
  9. S. Sarkar, Y. Guo and H. Wang, "Tunable optical delay via carrier induced exciton dephasing in semiconductor quantum wells," Opt. Express 14, 2845-2850 (2006). [CrossRef] [PubMed]
  10. M. V. Poel, J. Mørk and J. M. Hvam, "Controllable delay of ultrashort pulses in a quantum dot optical amplifier," Opt. Express 13, 8032-8037 (2005). [CrossRef] [PubMed]
  11. F. G. Sedgwick, B. Pesala, J. Y. Lin, W. S. Ko, X. Zhao and C. J. Chang-Hasnain, "THz-bandwidth tunable slow light in semiconductor optical amplifiers," Opt. Express 15, 747-753 (2007). [CrossRef] [PubMed]
  12. F. G. Sedgwick, B. Pesala, A. V. Uskov and C. J. Chang-Hasnain, "Chirp-enhanced fast light in semiconductor optical amplifiers," Opt. Express 15, 17631-17638 (2007). [CrossRef] [PubMed]
  13. G. P. Agrawal and A. Olsson, "Self-Phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers," IEEE J. Quantuim Electron. 25, (1989). [CrossRef]
  14. E. B. Treacy, "Optical pulse compression with diffraction gratings," IEEE J. Quantum. Electron. 5, (1969). [CrossRef]
  15. A. V. Uskov, J. Mork and J. Mark, "Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning," IEEE J. Quantum. Electron. 30, 1769-1781 (1994). [CrossRef]
  16. N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi and K. E. Stubkjaer, "Measurement of carrier lifetime and linewidth enhancement factor for 1.5-um ridge-waveguide laser amplifier," IEEE Photon. Technol. Lett. 3, 632-634 (1991). [CrossRef]
  17. R. F. Brenot, O. Pommereau, O. L. Gouezigou, J. Landreau, F. Poingt, L. L. Gouezigou, B. Rousseau, F. Lelarge, F. Martin and G.H. Duan, "Experimental study of the impact of optical confinement on saturation effects in SOA," Optical Fiber Communication Conference OFC/NFOEC OME50 (2005).
  18. S. Shunji, T. Yamanaka, W. Lui and K. Yokoyama, "Theoretical analysis of differential gain of 1.55 um InGaAsP/InP compressive-strained multiple-quantum-well lasers," J. Appl. Phys. 75, 1299-1303 (1994). [CrossRef]
  19. B. Pesala, F. G. Sedgwick, A. V. Uskov and C. J. Chang-Hasnain, "Ultra-high bandwidth electrically tunable fast and slow light in semiconductor optical amplifiers", J. Opt. Soc. Am. B 25, C46-C54 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited