OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 4 — Feb. 16, 2009
  • pp: 2224–2234

Electromagnetic force and torque on magnetic and negative-index scatterers

Patrick C. Chaumet and Adel Rahmani  »View Author Affiliations


Optics Express, Vol. 17, Issue 4, pp. 2224-2234 (2009)
http://dx.doi.org/10.1364/OE.17.002224


View Full Text Article

Enhanced HTML    Acrobat PDF (145 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We derive the analytic expressions of the electromagnetic force and torque on a dipolar particle, with arbitrary dielectric permittivity and magnetic permeability. We then develop a general framework, based on the coupled dipole method, for computing the electromagnetic force and torque experienced by an object with arbitrary shape, dielectric permittivity and magnetic permeability.

© 2009 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(050.1755) Diffraction and gratings : Computational electromagnetic methods

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: October 9, 2008
Revised Manuscript: December 4, 2008
Manuscript Accepted: December 4, 2008
Published: February 3, 2009

Citation
Patrick C. Chaumet and Adel Rahmani, "Electromagnetic force and torque on magnetic and negative-index scatterers," Opt. Express 17, 2224-2234 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-4-2224


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. M. Purcell and C. R. Pennypacker, "Scattering and absorption of light by nonspherical dielectric grains," Astrophys. J. 186, 705-714 (1973). [CrossRef]
  2. B. T. Draine, "The discrete-dipole approximation and its application to interstellar graphite grains," Astrophys. J. 333, 848-872 (1988). [CrossRef]
  3. B. T. Draine and P. J. Flatau, "Discrete-dipole approximation for scattering calculations," J. Opt. Soc. Am. A 11, 1491-1499 (1994). [CrossRef]
  4. M. A. Yurkin and A. G. Hoekstra, "The discrete dipole approximation: An overview and recent developments," J. Quant. Spectrosc. Radiat. Transf. 106, 558-589 (2007). [CrossRef]
  5. A. Rahmani, P. C. Chaumet, and F. de Fornel, "Environment-induced modification of spontaneous emission: Single-molecule near-field probe," Phys. Rev. A 63, 023819-11 (2001). [CrossRef]
  6. A. Rahmani and G. W. Bryant, "Spontaneous emission in microcavity electrodynamics," Phys. Rev. A 65, 033817-12 (2002). [CrossRef]
  7. A. Sentenac, P. C. Chaumet, and K. Belkebir, "Beyond the Rayleigh criterion: Grating assisted far-field optical diffraction tomography," Phys. Rev. Lett. 97, 243901-4 (2006). [CrossRef]
  8. P. C. Chaumet and M. Nieto-Vesperinas, "Optical binding of particles with or without the presence of a flat dielectric surface," Phys. Rev. B 64, 035422-7 (2001). [CrossRef]
  9. P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-object with an apertureless probe," Phys. Rev. Lett. 88, 123601-4 (2002). [CrossRef] [PubMed]
  10. M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, "Near-field photonic forces," Phil. Trans. Roy. Soc. Lond. A 362, 719-737 (2004). [CrossRef]
  11. P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Photonic force spectroscopy on metallic and absorbing nanoparticles," Phys. Rev. B 71, 045425-7 (2005). [CrossRef]
  12. A. Rahmani and P. C. Chaumet, "Optical Trapping near a Photonic Crystal," Opt. Express 14, 6353-6358 (2006). [CrossRef] [PubMed]
  13. B. T. Draine and J. C. Weingartner, "Radiative Torques on Interstellar Grains: I. Superthermal Spinup," Astrophys. J. 470, 551-565 (1996). [CrossRef]
  14. P. C. Chaumet and C. Billaudeau, "Coupled dipole method to compute optical torque: Application to a micropropeller," J. Appl. Phys. 101, 023106-6 (2007). [CrossRef]
  15. A. Lakhtakia, "General theory of the PurcellPennypacker scattering approach and its extension to bianisotropic scatterers," Astrophys J 394, 494-499 (1192). [CrossRef]
  16. G. W. Mulholland, C. F. Bohren, and K. A. Fuller, "Light Scattering by Agglomerates Coupled Electric and Magnetic Dipole Method," Langmuir 10, 2533-2546 (1994). [CrossRef]
  17. O. Merchiers, F. Moreno, F. Gonzalez, and J. M. Saiz, "Light scattering by an ensemble of interacting dipolar particleswith both electric and magnetic," Phys. Rev. A 76, 043834-12 (2007). [CrossRef]
  18. Y. You, G. W. Kattawar, P.-W. Zhai, and p. Yang, "Zero-backscatter cloak for aspherical particles using a generalized dda formalism," Opt. Express 16, 2068-2079 (2008). [CrossRef] [PubMed]
  19. P. C. Chaumet and A. Rahmani, "Coupled-dipole method for magnetic and negative refraction materials," J. Quant. Spect. Rad. Transf. 110, 22-29 (2009).
  20. B. Kemp, T. Grzegorczyk, and J. Kong, "Ab initio study of the radiation pressure on dielectric and magnetic media," Opt. Express 13, 9280-9291 (2005). http://www.opticsinfobase.org/oe/abstract.cfm>? URI=oe-13-23-9280 [CrossRef] [PubMed]
  21. B. A. Kemp, T. M. Grzegorczyk, and J. A. Kong, "Lorentz force on dielectric and magnetic particles," J. Electromagn. Waves Appl. 20, 827-839 (2006). [CrossRef]
  22. A. Lakhtakia, "Radiation Pressure Efficiencies of Spheres Made of Isotropic, Achiral, Passive, Homogeneous, Negative-Phase-Velocity Materials," Electromagnetics 28, 346-353 (2008) [CrossRef]
  23. P. C. Chaumet and M. Nieto-Vesperinas, "Time-averaged total force on a dipolar sphere in an electromagnetic field," Opt. Lett. 25, 1065-1067 (2000). [CrossRef]
  24. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New-York, 1941).
  25. J. D. Jackson, Classical Electrodynamics (Wiley, 1975), 2nd ed.
  26. G. S. Agarwal, "Quantum electrodynamics in the presence of dielectrics and conductors. I Electromagnetic-field response functions and black-body fluctuations in finite geometry," Phys. Rev. A 11, 230-242 (1975). [CrossRef]
  27. G. H. Goedecke and S. G. O’Brien, "Scattering by irregular inhomogeneous particles via the digitized Green’s function algorithm," Appl. Opt. 27, 2431-2438 (1988) [CrossRef] [PubMed]
  28. M. Dienerowitz, M. Mazilu, and K. Dholakia, "Optical trapping of nanoparticles: a review," J. Nanophoton. 2, 021875-32 (2008). [CrossRef]
  29. P. C. Waterman, "Symmetry, Unitary, and Geometry in Electromagnetic Scattering," Phys. Rev. D 3, 825-839 (1971). [CrossRef]
  30. P. L. Marston and J. H. Crichton, "Radiation torque on a sphere caused by a circularly-polarized electromagnetic wave," Phys. Rev. A 30, 2508-2516 (1984). [CrossRef]
  31. T. A. Nieminen, "Comment on Geometric absorption of electromagnetic angular momentum, C. Konz, G. Benford," Opt. Commun. 235, 227-229 (2004). [CrossRef]
  32. A. Rahmani, P. C. Chaumet, and G. W. Bryant, "On the Importance of Local-Field Corrections for Polarizable Particles on a Finite Lattice: Application to the Discrete Dipole Approximation," Astrophys. J. 607, 873-878 (2004). [CrossRef]
  33. P. C. Chaumet, A. Rahmani, A. Sentenac, and G. W. Bryant, "Efficient computation of optical forces with the coupled dipole method," Phys. Rev. E 72, 046708-6 (2005). [CrossRef]
  34. R. D. Da Cunha and T. Hopkins, "The Parallel Iterative Methods (PIM) package for the solution of systems of linear equations on parallel computers," Appl. Numer. Math. 19, 33-50 (1995). [CrossRef]
  35. J. J. Goodman and P. J. Flatau, "Application of fast-fourier-transform techniques to the discrete-dipole approximation," Opt. Lett. 16, 1198-1200 (2002). [CrossRef]
  36. A. Lakhtakia, "Strong and weak forms of the method of moments and the coupled dipole method for scattering of time-harmonic electromagnetics fields," Int. J. Mod. Phys. C 3, 583-603 (1992). [CrossRef]
  37. C. E. Dungey and C. F. Bohren, "Light scattering by nonspherical particles: a refinement to the coupled-dipole method," J. Opt. Soc. Am. A 8, 81-87 (1991). [CrossRef]
  38. P. C. Chaumet, A. Sentenac, and A. Rahmani, "Coupled dipole method for scatterers with large permittivity," Phys. Rev. E 70, 036606-6 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited