OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 4 — Feb. 16, 2009
  • pp: 2326–2333

Ultrafast carrier kinetics in exfoliated graphene and thin graphite films

Ryan W. Newson, Jesse Dean, Ben Schmidt, and Henry M. van Driel  »View Author Affiliations


Optics Express, Vol. 17, Issue 4, pp. 2326-2333 (2009)
http://dx.doi.org/10.1364/OE.17.002326


View Full Text Article

Enhanced HTML    Acrobat PDF (417 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Time-resolved transmissivity and reflectivity of exfoliated graphene and thin graphite films on a 295 K SiO2/Si substrate are measured at 1300 nm following excitation by 150 fs, 800 nm pump pulses. From the extracted transient optical conductivity we identify a fast recovery time constant which increases from ~200 to 300 fs and a longer one which increases from 2.5 to 5 ps as the number of atomic layers increases from 1 to ~260. We attribute the temporal recovery to carrier cooling and recombination with the layer dependence related to substrate coupling. Results are compared with related measurements for epitaxial, multilayer graphene.

© 2009 Optical Society of America

OCIS Codes
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors
(160.4236) Materials : Nanomaterials

ToC Category:
Ultrafast Optics

History
Original Manuscript: December 15, 2008
Revised Manuscript: January 30, 2009
Manuscript Accepted: February 3, 2009
Published: February 5, 2009

Citation
Ryan W. Newson, Jesse Dean, Ben Schmidt, and Henry M. van Driel, "Ultrafast carrier kinetics in exfoliated graphene and thin graphite films," Opt. Express 17, 2326-2333 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-4-2326


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. R. Wallace, "The band theory of graphite," Phys. Rev. 71, 622-634 (1947). [CrossRef]
  2. A. K. Geim and K. S. Novoselov, "The rise of graphene," Nat. Mater. 6, 183-191 (2007). [CrossRef] [PubMed]
  3. G. W. Semenoff, "Condensed-matter simulation of a 3-dimensional anomaly," Phys. Rev. Lett. 53, 2449-2452 (1984). [CrossRef]
  4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science 306, 666-669 (2004). [CrossRef] [PubMed]
  5. Y. B. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, "Experimental observation of the quantum Hall effect and Berry’s phase in graphene," Nature 438, 201-204 (2005). [CrossRef] [PubMed]
  6. K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P.  Kim, and A. K. Geim, "Room temperature quantum hall effect in graphene," Science 315, 1379 (2007). [CrossRef] [PubMed]
  7. B. Partoens and F. M. Peeters, "From graphene to graphite: Electronic structure around the K point," Phys. Rev. B 74, 075404 (2006). [CrossRef]
  8. C. Berger, Z. M. Song, T. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, "Ultrathin epitaxial graphite: 2D electronic gas properties and a route toward graphene-based nanoelectronics," J. Phys. Chem. B 108, 19912-19916 (2004). [CrossRef]
  9. C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, D. Mayou, T. B. Li, J. Haas, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, "Electronic confinement and coherence in patterned expitaxial graphene," Science 312, 1191-1196 (2006). [CrossRef] [PubMed]
  10. J. Hass, R. Feng, J. E. Millán-Otoya, X. Li, M. Sprinkle, P. N. First, W. A. de Heer, E. H. Conrad, and C. Berger, "Structural properties of the multilayer graphene/4H-SiC(0001 ) system as determined by surface x-ray diffraction," Phys. Rev. B 75, 214109 (2007). [CrossRef]
  11. P. Darancet, N. Wipf, C. Berger, W. A. de Heer, and D. Mayou, "Quenching of quantum Hall effect and the role of undoped planes in multilayered epitaxial graphene," arXiv:cond-mat/0711.0940 (2008).
  12. W. A. de Heer, C. Berger, X. S. Wu, P. N. First, E. H. Conrad, X. B. Li, T. B. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski, and G. Martinez, "Epitaxial graphene," Solid State Commun. 143, 92-100 (2007). [CrossRef]
  13. M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, and W. A. de Heer, "Landau level spectroscopy of ultrathin graphite layers," Phys. Rev. Lett. 97, 266405 (2006). [CrossRef]
  14. J. Hass, F. Varchon, J. E. Millán-Otoya, M. Sprinkle, N. Sharma, W. A. de Heer, C. Berger, P. N. First, L. Magaud, and E. H. Conrad, "Why multilayer graphene on 4H-SiC(0001 ) behaves like a single sheet of graphene," Phys. Rev. Lett. 100, 125504 (2008). [CrossRef] [PubMed]
  15. J. Hass, F. Varchon, J. E. Millán-Otoya, M. Sprinkle, W. A. de Heer, C. Berger, P. N. First, L. Magaud, and E. H. Conrad, "Rotational stacking and its electronic effects on graphene films grown on 4H-SiC(0001 )," arXiv:cond-mat/0706.2134 (2007).
  16. P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, "Making graphene visible," Appl. Phys. Lett. 91, 063124 (2007). [CrossRef]
  17. D. S. L. Abergel, A. Russell, and V. I. Fal'ko, "Visibility of graphene flakes on a dielectric susbstrate," Appl. Phys. Lett. 91, 063125 (2007). [CrossRef]
  18. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, "Raman spectrum of graphene and graphene layers," Phys. Rev. Lett. 97, 187401 (2006). [CrossRef] [PubMed]
  19. J. M. Dawlaty, S. Shivaraman, M. Chandrasekhar, F. Rana, and M. G. Spencer, "Measurement of ultrafast carrier dynamics in epitaxial graphene," Appl. Phys. Lett. 92, 042116 (2008). [CrossRef]
  20. D. Sun, Z.-K. Wu, C. Divin, X. B. Li, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, "Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy," Phys. Rev. Lett. 101, 157402 (2008). [CrossRef] [PubMed]
  21. M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cançado, A. Jorio, and R. Saito, "Studying disorder in graphite-based systems by Raman spectroscopy," Phys. Chem. Chem. Phys. 91276-1291 (2007). [CrossRef] [PubMed]
  22. A. J. Sabbah and D. M. Riffe, "Femtosecond pump-probe study of silicon carrier dynamics," Phys. Rev. B 66, 165217 (2002). [CrossRef]
  23. K. Seibert, G. C. Cho, W. Kütt, H. Kurz, D. H. Reitze, J. I. Dadap, H. Ahn, and M. C. Downer, "Femtosecond carrier dynamics in graphite," Phys. Rev. B,  42, 2842-2851 (1990). [CrossRef]
  24. C. C. Katsidis and D. I. Siapkas, "General transfer-matrix method for optical multilayer systems with coherent, partially coherent and incoherent interference," Appl. Opt. 41, 3978-3987 (2002). [CrossRef] [PubMed]
  25. T. Kampfrath, L. Perfetti, F. Schapper, C. Frischkorn, and M. Wolf, "Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite," Phys. Rev. Lett. 95, 187403 (2005). [CrossRef] [PubMed]
  26. P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. V. S. Chandrasekhar, F. Rana, and M. G. Spencer, "Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene," arXiv:cond-mat/0805.4647v3 (2008).
  27. F. Rana, "Graphene terahertz plasmon oscillators," IEEE Trans. Nanotechnol. 7, 91-99 (2008). [CrossRef]
  28. K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, "Measurement of the Optical Conductivity of Graphene," Phys. Rev. Lett. 101, 196405 (2008). [CrossRef] [PubMed]
  29. A. Borghesi and G. Guizzetti, Handbook of Optical Constants of Solids, Vol. 2 (Academic Press, 1991), pp. 449-460.
  30. J. Norley, "The role of natural graphite in electronics cooling," (Electronics Cooling Magazine, 2001). http://www.electronics-cooling.com/articles/2001/2001_august_techbrief.php
  31. J. P. Holman, Heat Transfer 9th Ed. (McGraw-Hill, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited