OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 4 — Feb. 16, 2009
  • pp: 2364–2374

Channel and wedge plasmon modes of metallic V-grooves with finite metal thickness

José Dintinger and Olivier J.F. Martin  »View Author Affiliations

Optics Express, Vol. 17, Issue 4, pp. 2364-2374 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (936 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate numerically the effect of a finite metal film thickness on the propagation characteristics of the channel plasmon polariton (CPP) and wedge plasmon polariton (WPP) modes, both in a symmetric and asymmetric environment. We observe that decreasing the metal thickness results in an improvement of the field localization near the groove tip and an increase of the losses for both types of mode. This behavior stems from the typical symmetric charge distribution of both modes across the metal film. When considering an asymmetric dielectric environment, the CPP mode is found to evolve into short range plasmon modes propagating along the groove walls, in contrast to the WPP mode which remains essentially confined at the tip apex. These results can be useful to tailor the properties of such plasmon modes, using the metal thickness as the variable parameter.

© 2009 Optical Society of America

OCIS Codes
(230.7380) Optical devices : Waveguides, channeled
(240.0310) Optics at surfaces : Thin films
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: December 17, 2008
Revised Manuscript: January 30, 2009
Manuscript Accepted: January 30, 2009
Published: February 5, 2009

José Dintinger and Olivier J. F. Martin, "Channel and wedge plasmon modes of metallic V-grooves with finite metal thickness," Opt. Express 17, 2364-2374 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Fulbert and T. Pearsall, "A European roadmap for photonics and nanotechnology," MONA, Merging Optics & Nanotechnologies (2008).
  2. E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006). [CrossRef] [PubMed]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  4. J. T. Kim, J. J. Ju, S. Park, M.-s. Kim, S. K. Park, and M.-H. Lee, "Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides," Opt. Express 16, 13133-13138 (2008). [CrossRef] [PubMed]
  5. S. Sidorenko, and O. J. F. Martin, "Resonant tunneling of surface plasmon-polaritons," Opt. Express 15, 6380-6388 (2007). [CrossRef] [PubMed]
  6. H. Raether, "Surface-Plasmons on Smooth and Rough Surfaces and on Gratings," Springer Tracts Mod. Phys. 111, 1-133 (1988).
  7. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, "Surface-plasmon circuitry," Phys. Today 61, 44-50 (2008). [CrossRef]
  8. A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, "Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths," Opt. Express 16, 5252-5260 (2008). [CrossRef] [PubMed]
  9. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005). [CrossRef] [PubMed]
  10. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006). [CrossRef] [PubMed]
  11. D. K. Gramotnev and D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface," Appl. Phys. Lett. 85, 6323-6325 (2004). [CrossRef]
  12. D. K. Gramotnev and K. C. Vernon, "Adiabatic nano-focusing of plasmons by sharp metallic wedges," Appl. Phys. B Lasers Opt. 86, 7-17 (2007). [CrossRef]
  13. E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, "Channel plasmon-polaritons: modal shape, dispersion, and losses," Opt. Lett. 31, 3447-3449 (2006). [CrossRef] [PubMed]
  14. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, "Guiding and focusing of electromagnetic fields with wedge plasmon polaritons," Phys. Rev. Lett. 100, 023901 (2008). [CrossRef] [PubMed]
  15. I. V. Novikov and A. A. Maradudin, "Channel polaritons," Phys. Rev. B 66, 035403 (2002). [CrossRef]
  16. S. I. Bozhevolnyi, "Effective-index modeling of channel plasmon polaritons," Opt. Express 14, 9467-9476 (2006). [CrossRef] [PubMed]
  17. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York 1985).
  18. D. K. Gramotnev, "Adiabatic nanofocusing of plasmons by sharp metallic grooves: Geometrical optics approach," J. Appl. Phy. 98 (2005). [CrossRef]
  19. COMSOL Multiphysics version 3.4.
  20. M. Yan and M. Qiu, "Guided plasmon polariton at 2D metal corners," J. Opt. Soc. Am. B-Opt. Phys. 24, 2333-2342 (2007). [CrossRef]
  21. J. Chen, G. A. Smolyakov, S. R. J. Brueck, and K. J. Malloy, "Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides," Opt. Express,  16,14902-14909 (2008).
  22. E. N. Economou, "Surface Plasmons in Thin Films," Phys. Rev. 182, 539-554 (1969). [CrossRef]
  23. J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186 (1986). [CrossRef]
  24. J. Van Bladel, Singular electromagnetic fields and sources (Oxford Univ. Press, Oxford 1995).
  25. L. D. Landau and E. M. Lifshitz, Electrodynamics of continuous media (Pergamon Press, Oxford 1984).
  26. R. Zia, M. D. Selker, and M. L. Brongersma, "Leaky and bound modes of surface plasmon waveguides," Phys. Rev. B 71, 165431 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (340 KB)     
» Media 2: MOV (283 KB)     
» Media 3: MOV (358 KB)     
» Media 4: MOV (234 KB)     
» Media 5: MOV (877 KB)     
» Media 6: MOV (380 KB)     
» Media 7: MOV (119 KB)     
» Media 8: MOV (182 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited