OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 4 — Feb. 16, 2009
  • pp: 2375–2384

In-fiber common-path optical coherence tomography using a conical-tip fiber

K. M. Tan, M. Mazilu, T. H. Chow, W. M. Lee, K. Taguchi, B. K. Ng, W. Sibbett, C. S. Herrington, C. T. A. Brown, and K. Dholakia  »View Author Affiliations

Optics Express, Vol. 17, Issue 4, pp. 2375-2384 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (848 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Common-path optical coherence tomography (CPOCT) is known to reduce group velocity dispersion and polarization mismatch between the reference and the sample arm as both arms share the same physical path. Existing implementations of CPOCT typically require one to incorporate an additional cover glass within the beam path of the sample arm to provide a reference signal. In this paper, we aim to further reduce this step by directly making use of the back-reflected signal, arising from a conical lens-tip fiber, as a reference signal. The conical lens, which is directly manufactured onto the optical fiber tip via a simple selective-chemical etching process, fulfils two functions acting as both the imaging lens and the self-aligning reference plane. We use a Fourier-domain OCT system to demonstrate the feasibility of this technique upon biological tissue. An in-fiber CPOCT technique may prove potentially useful in endoscopic OCT imaging.

© 2009 Optical Society of America

OCIS Codes
(060.2350) Fiber optics and optical communications : Fiber optics imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(220.4000) Optical design and fabrication : Microstructure fabrication

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: November 18, 2008
Revised Manuscript: January 19, 2009
Manuscript Accepted: February 2, 2009
Published: February 5, 2009

Virtual Issues
Vol. 4, Iss. 4 Virtual Journal for Biomedical Optics

K. M. Tan, M. Mazilu, T. H. Chow, W. M. Lee, K. Taguchi, B. K. Ng, W. Sibbett, C. S. Herrington, C.T. A. Brown, and K. Dholakia, "In-fiber common-path optical coherence tomography using a conical-tip fiber," Opt. Express 17, 2375-2384 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. A. S. D. Huang, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991). [CrossRef]
  2. W. Drexler, "Ultrahigh-resolution optical coherence tomography," J. Biomed. Opt. 9, 47-74 (2004). [CrossRef] [PubMed]
  3. A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, "Common-path interferometer for frequency-domain optical coherence tomography," Appl. Opt. 42, 6953-6958 (2003). [CrossRef] [PubMed]
  4. A. Popp, M. Wendel, L. Knels, P. Knuschke, M. Mehner, T. Koch, D. Boller, P. Koch, and E. Koch, "Common-path Fourier domain optical coherence tomography of irradiated human skin and ventilated isolated rabbit lungs," Proc. SPIE 5861, 58610Q (2005).
  5. A. R. Tumlinson, B. Považay, L. P. Hariri, J. McNally, A. Unterhuber, B. Hermann, H. Sartmann, W. Drexler, and J. K. Barton, "In vivo ultrahigh-resolution optical coherence tomography of mouse colon with an achromatized endoscope," J. Biomed. Opt. 11, 064003 (2006). [CrossRef]
  6. U. Sharma and J. U. Kang, "Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography," Rev. Sci. Instrum. 78, 113102 (2007). [CrossRef] [PubMed]
  7. H. Y. Choi, S. Y. Ryu, J. H. Na, B. H. Lee, I. B. Sohn, Y. C. Noh, and J. M. Lee, "Single-body lensed photonic crystal fibers as side-viewing probes for optical imaging systems," Opt. Lett. 33, 34-36 (2008). [CrossRef]
  8. S. Y. Ryu, H. Y. Choi, J. Na, W. J. Choi, and B. H. Lee, "Lensed fiber probes designed as an alternative to bulk probes in optical coherence tomography," Appl. Opt. 47, 1510-1516 (2008). [CrossRef] [PubMed]
  9. Z. H. Ding, H. W. Ren, Y. H. Zhao, J. S. Nelson, and Z. P. Chen, "High-resolution optical coherence tomography over a large depth range with an axicon lens," Opt. Lett. 27, 243-245 (2002). [CrossRef]
  10. K. S. Lee, and L. P. Rolland, "Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range," Opt. Lett. 33, 1696-1698 (2008). [CrossRef] [PubMed]
  11. S. Mononobe and M. Ohtsu, "Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching," J. Lightwave Technol. 14, 2231-2235 (1996). [CrossRef]
  12. S. Y. Ryu, Department of Information and Communications, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju 500-712, South Korea (personal communication, 2008).
  13. E. B. Li, G. D. Peng, and X. Ding, "High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity," Appl. Phys. Lett. 92,10117 (2008).
  14. G. Häusler, and M. W. Lindner, "Coherence Radar and Spectral Radar—New Tools for Dermatological Diagnosis," J. Biomed. Opt. 3, 21-31 (1998). [CrossRef]
  15. S. K. Eah, W. Jhe, and Y. Arakawa, "Nearly diffraction-limited focusing of a fiber axicon microlens," Rev. Sci. Instrum. 74, 4969-4971 (2003). [CrossRef]
  16. Y. J. Yu, H. Noh, M. H. Hong, H. R. Noh, Y. Arakawa, and W. Jhe, "Focusing characteristics of optical fiber axicon microlens for near-field spectroscopy: Dependence of tip apex angle," Opt. Commun. 267, 264-270 (2006). [CrossRef]
  17. T. Grosjean, S. S. Saleh, M. A. Suarez, I. A. Ibrahim, V. Piquerey, D. Charraut, and P. Sandoz, "Fiber microaxicons fabricated by a polishing technique for the generation of Bessel-like beams," App. Opt. 46, 8061-8067 (2007). [CrossRef]
  18. X. D. Li, X. M. Liu, Y. C. Chen, M. J. Cobb, and M. B. Kimmey, "Development of a fast scanning miniature probe and methods of dispersion management for high-resolution optical coherence tomography," in 26th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (2004), pp. 5289-5291.
  19. A. M. Zysk, E. J. Chaney, and S. A. Boppart "Refractive index of carcinogen-induced rat mammary tumours," Phys. Med. Biol. 51, 2165-2177 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited