OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 4 — Feb. 16, 2009
  • pp: 2487–2499

Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy

L. Miccio, A. Finizio, S. Grilli, V. Vespini, M. Paturzo, S. De Nicola, and Pietro Ferraro  »View Author Affiliations


Optics Express, Vol. 17, Issue 4, pp. 2487-2499 (2009)
http://dx.doi.org/10.1364/OE.17.002487


View Full Text Article

Enhanced HTML    Acrobat PDF (993 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A special class of tunable liquid microlenses is presented here. The microlenses are generated by an electrowetting effect under an electrode-less configuration and they exhibit two different regimes that are named here as separated lens regime (SLR) and wave-like lens regime (WLR). The lens effect is induced by the pyroelectricity of polar dielectric crystals, as was proved in principle in a previous work by the same authors (S. Grilli et al., Opt. Express 16, 8084, 2008). Compared to that work, the improvements to the experimental set-up and procedure allow to reveal the two lens regimes which exhibit different optical properties. A digital holography technique is used to reconstruct the transmitted wavefront during focusing and a focal length variation in the millimetre range is observed. The tunability of such microlenses could be of great interest to the field of micro-optics thanks to the possibility to achieve focus tuning without moving parts and thus favouring the miniaturization of the optical systems.

© 2009 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(090.0090) Holography : Holography
(160.3730) Materials : Lithium niobate
(220.3630) Optical design and fabrication : Lenses

ToC Category:
Adaptive Optics

History
Original Manuscript: October 24, 2008
Revised Manuscript: December 12, 2008
Manuscript Accepted: December 19, 2008
Published: February 6, 2009

Citation
L. Miccio, A. Finizio, S. Grilli, V. Vespini, M. Paturzo, S. De Nicola, and Pietro Ferraro, "Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy," Opt. Express 17, 2487-2499 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-4-2487


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Dong, A. K. Agarwal, D. J. David, J. Beebe, and H. Jiang, "Adaptive liquid mcrolenses activated by stimuli-responsive hydrogels," Nature 442, 551-554 (2006). [CrossRef] [PubMed]
  2. B. Berge and J. Peseux, "Variable focal lens controlled by an external voltage: An application of electrowetting," Eur. Phys. J. E 3, 159-163 (2000). [CrossRef]
  3. L. G. Commander, S. E. Day, and D. R. Selviah, "Variable focal length microlenses," Opt. Commun. 17, 157-170 (2000). [CrossRef]
  4. P. H. Huang, T. C. Huang, Y. T. Sun, and S. Y. Yang, "Fabrication of large area resin microlens arrays using gas-assisted ultraviolet embossing," Opt. Express 16, 3041-3048 (2008). [CrossRef] [PubMed]
  5. A. Pikulin N. Bityurin, G. Langer, D. Brodoceanu, and D. Bauerle, "Hexagonal structures on metal-coated two-dimensional microlens arrays," Appl. Phys. Lett. 91,191106 (2007). [CrossRef]
  6. F. Krogmann, W. Monch, and H. Zappe, "A MEMS-based variable micro-lens system," J. Opt. A 8, S330-S336 (2006) [CrossRef]
  7. C. C. Cheng, C. A. Chang, and J. A. Yeh, "Variable focus dielectric liquid droplet lens," Opt. Express 14, 4101-4106 (2006) [CrossRef] [PubMed]
  8. C. C. Cheng and J. A. Yeh, "Dielectrically actuated liquid lens," Opt. Express 15, 7140-7145 (2007). [CrossRef] [PubMed]
  9. N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, "Tunable liquid-filled microlens array integrated with microfluidic network," Opt. Express 11, 2370-2378 (2003). [CrossRef] [PubMed]
  10. D. Y. Zhang, N. Justis, and Y. H. Lo, "Integrated fluidic adaptive zoom lens," Opt. Lett. 29, 2855-2857 (2004). [CrossRef]
  11. P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, "Fluidic lenses with variable focal length," Appl. Phys. Lett. 88, 041120 (2006). [CrossRef]
  12. H. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, "Tunable-focus liquid lens controlled using a servo motor," Opt. Express 14, 8031-8036 (2006). [CrossRef] [PubMed]
  13. L. Hou, N. Smith, and J. Heikenfeld, "Electrowetting Modulation of Any Flat Optical Film," Appl. Phys. Lett. 90, 251114 (2007). [CrossRef]
  14. N. Smith, D. Abeysinghe, J. Heikenfeld, and J. W. Haus, Agile, "Wide-Angle Beam Steering with Electrowetting Microprisms," Opt. Express 14, 6557 (2006). [CrossRef] [PubMed]
  15. B. Sun, K. Zhou, Y. Lao, W. Cheng, and J. Heikenfeld, "Scalable Fabrication of Electrowetting Pixel Arrays with Self-Assembled Oil Dosing," Appl. Phys. Lett. 91, 011106 (2007). [CrossRef]
  16. S. Kuiper and B. H. W. Hendriks, "Variable- focus liquid lens for miniature cameras," Appl. Phys. Lett. 85, 1128-1130 (2004). [CrossRef]
  17. J. L. Lin, G. B. Lee, Y. H. Chang, and K. Y. Lien, "Model Description of Contact Angles in Electrowetting on Dielectric Layers," Langmuir 22, 484-489 (2006). [CrossRef]
  18. W. H. Hsieh and J. H. Chen, "Lens-Profile Control by Electrowetting Fabrication Technique," IEEE Photon. Technol. Lett. 17, 606-608 (2005). [CrossRef]
  19. G. Milne, G. D. M. Jeffries, and D. T. Chiu, "Tunable generation of Bessel beams with a fluidic axicon," Appl. Phys. Lett. 92, 261101 (2008). [CrossRef]
  20. X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, "Hydrodynamically tunable optofluidic cylindrical microlens," Lab. Chip 7, 1303-1308 (2007). [CrossRef] [PubMed]
  21. X. Huang, C. M. Cheng, L. Wang, B. Wang, C. C. Su, M. S. Ho, P. R. LeDuc, and Q. Lin, "Thermally tunable polymer microlenses," Appl. Phys. Lett. 92,251904 (2008). [CrossRef]
  22. Y. Lu and S. Chen, "Direct write of microlens array using digital projection photopolymerization," Appl. Phys. Lett. 92, 041109 (2008). [CrossRef]
  23. W. Moench and H. Zappe, "Fabrication and testing of micro-lens arrays by all-liquid techniques," J. Opt. A 6, 330-337 (2004). [CrossRef]
  24. Y. Choi, H. R. Kim, K. H. Lee, Y. M. Lee, and J. H. Kim, "A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer," Appl. Phys. Lett. 91, 221113 (2007). [CrossRef]
  25. H. Ren, Y. H. Fan, and S. T. Wu, "Liquid-crystal microlens arrays using patterned polymer networks," Opt. Lett. 29, 1608-1610 (2004). [CrossRef] [PubMed]
  26. H. Ren and S. T. Wu, "Tunable-focus liquid microlens array using dielectrophoretic effect," Opt. Express 16, 2646-2652 (2008). [CrossRef] [PubMed]
  27. K. H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, "Tunable microdoublet lens array," Opt. Express 12, 2494-2500 (2004). [CrossRef] [PubMed]
  28. S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and P. Ferraro, "Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates," Opt. Express 16, 8084-8093 (2008). [CrossRef] [PubMed]
  29. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, "First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation," Appl. Phys. Lett. 62, 435-436 (1993). [CrossRef]
  30. S. Grilli, M. Paturzo, L Miccio, and P. Ferraro, "In situ investigation of periodic poling in congruent LiNbO3 by quantitative interference microscopy," Meas. Sci. Technol. 19, 074008 (2008). [CrossRef]
  31. E. M. Bourim C. W. Moon, S. W. Lee, V. Sidorkin, and I. K. Yoo, "Pyroelectric electron emission from -Z face polar surface of lithium niobate monodomain single crystal," J. Electroceram 17, 479-485 (2006). [CrossRef]
  32. P. Ferraro, S. De Nicola, and G. Coppola, "Digital holography: recent advancements and prospective improvements for applications in microscopy," in Optical Imaging Sensors and Systems for Homeland Security Applications, vol. 2 of Advanced Sciences and Technologies for Security Applications series B. Javidi ed., (Springer, 2005), pp. 47-84.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (642 KB)     
» Media 2: MOV (536 KB)     
» Media 3: MOV (3977 KB)     
» Media 4: MOV (2419 KB)     
» Media 5: MOV (1599 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited