OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 4 — Feb. 16, 2009
  • pp: 2500–2507

Nanostructuring of organic-inorganic hybrid materials for distributed feedback laser resonators by two-photon polymerization

Thomas Woggon, Thomas Kleiner, Martin Punke, and Uli Lemmer  »View Author Affiliations


Optics Express, Vol. 17, Issue 4, pp. 2500-2507 (2009)
http://dx.doi.org/10.1364/OE.17.002500


View Full Text Article

Enhanced HTML    Acrobat PDF (292 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

With two-photon absorption induced polymerization arbitrary three dimensional nano- and microstructures can be patterned directly into photoresists. We report on the fabrication of a low threshold organic semiconductor distributed feedback laser using the technique of two-photon absorption induced polymerization. A surface grating with 400 nm periodicity and 40 nm height modulation was fabricated by two-photon absorption induced polymerization in the organic-inorganic hybrid material ORMOCER®. With structuring several stacked layers acting as a planar basis for the nanostructure microscopic substrate tilt can be compensated simply. This enabled us to uniformly nano-structure the surface grating over an area of 200×200 μm2.

© 2009 Optical Society of America

OCIS Codes
(140.7300) Lasers and laser optics : Visible lasers
(160.4890) Materials : Organic materials
(160.6060) Materials : Solgel
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Materials

History
Original Manuscript: November 6, 2008
Revised Manuscript: December 15, 2008
Manuscript Accepted: December 15, 2008
Published: February 6, 2009

Citation
Thomas Woggon, Thomas Kleiner, Martin Punke, and Uli Lemmer, "Nanostructuring of organic-inorganic hybrid materials for distributed feedback laser resonators by two-photon polymerization," Opt. Express 17, 2500-2507 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-4-2500


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Maruo, O. Nakamura, and S. Kawata, "Three-dimensional microfabrication with two-photon-absorbed photopolymerization,"Opt. Lett. 22, 132-134 (1997). [CrossRef] [PubMed]
  2. Z. Bayindir, Y. Sun, M. J. Naughton, C. N. LaFratta, T. Baldacchini, J. T. Fourkas, J. Stewart, B. E. A. Saleh,and M. C. Teich, "Polymer microcantilevers fabricated via multiphoton absorption polymerization," Appl. Phys.Lett. 86, 064105 (2005). [CrossRef]
  3. H.-B. Sun, K. Takada, and S. Kawata, "Elastic force analysis of functional polymer submicron oscillators," Appl.Phys. Lett. 79, 3173-3175 (2001). [CrossRef]
  4. M. Thiel, G. von Freymann, and M. Wegener, "Layer-by-layer three-dimensional chiral photonic crystals," Opt.Lett. 32, 2547-2549 (2007). [CrossRef] [PubMed]
  5. Nanoscribe GbR. http://www.nanoscribe.de.
  6. R. Houbertz, "Laser interaction in sol-gel based materials-3-D lithography for photonic applications," Appl. Surf.Sci. 247, 504-512 (2005). [CrossRef]
  7. A. Ovsianikov, A. Doraiswamy, R. Narayan, and B. N. Chichkov, "Two-photon polymerization for fabrication ofbiomedical devices," Proc. SPIE 6465, 64650O (2007). [CrossRef]
  8. R. Houbertz, G. Domann, J. Schulz, B. Olsowski, L. Fr¨ohlich, and W.-S. Kim, "Impact of photoinitiators onthe photopolymerization and the optical properties of inorganic-organic hybrid polymers," Appl. Phys. Lett. 84,1105-1107 (2004). [CrossRef]
  9. V. Schmidt, L. Kuna, V. Satzinger, R. Houbertz, G. Jakopic, and G. Leising, "Application of two-photon 3Dlithography for the fabrication of embedded ORMOCER waveguides," Proc. SPIE 6476, 64760P (2007). [CrossRef]
  10. S. Balslev, B. Bilenberg, D. Nilsson, A. M. Jorgensen, A. Kristensen, O. Geschke, J. P. Kutter, K. B. Mogensen,and D. Snakenborg, "Fully integrated optical systems for lab-on-a-chip applications," Proc. SPIE 5730, 211-217(2005). [CrossRef]
  11. M. Punke, T. Woggon, M. Stroisch, B. Ebenhoch, U. Geyer, C. Karnutsch, M. Gerken, U. Lemmer, M. Bruendel,J. Wang, and T. Weimann, "Organic semiconductor lasers as integrated light sources for optical sensor systems," Proc. SPIE 6659, 665909 (2007). [CrossRef]
  12. M. Punke, S. Mozer, M. Stroisch, M. P. Heinrich, U. Lemmer, P. Henzi, and D. G. Rabus, "Coupling of OrganicSemiconductor Amplified Spontaneous Emission Into Polymeric Single-Mode Waveguides Patterned by Deep-UV Irradiation," IEEE Photon. Technol. Lett. 19, 61-63 (2007). [CrossRef]
  13. M. B. Christiansen, M. S. ler, and A. Kristensen, "Combined nano-imprint and photolithography (CNP) of integrated polymer optics," Proc. SPIE 6462, 64620O (2007). [CrossRef]
  14. S. Yokoyama, T. Nakahama, H. Miki, and S. Mashiko, "Two-photon-induced polymerization in a laser gain medium for optical microstructure," Appl. Phys. Lett. 82, 3221-3223 (2003). [CrossRef]
  15. S. Klein, A. Barsella, V. Stortz, A. Fort, and K. D. Dorkenoo, "Colloid-based photonic crystal for organic lasers and two-photon induced polymerization for tunable DFB lasers," in Conf. on Lasers & Electro-Optics (CLEO), vol. 1-3, pp. 311-313 (Optical Society of America, 2005).
  16. A. Mukherjee, "Two-photon pumped upconverted lasing in dye doped polymer waveguides," Appl. Phys. Lett. 62, 3423-3425 (1993). [CrossRef]
  17. M. A. Albota, C. Xu, and W. W. Webb, "Two-Photon Fluorescence Excitation Cross Sections of Biomolecular Probes from 690 to 960 nm," Appl. Opt. 37, 7352-7356 (1998). [CrossRef]
  18. C. Karnutsch, M. Stroisch, M. Punke, U. Lemmer, J. Wang, and T. Weimann, "Laser Diode-Pumped Organic Semiconductor Lasers Utilizing Two-Dimensional Photonic Crystal Resonators," IEEE Photon. Technol. Lett. 19, 741-743 (2007). [CrossRef]
  19. T. Riedl, T. Rabe, H. H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell and U. Scherf, "Tunable organic thin-film laser pumped by an inorganic violet diode laser," Appl. Phys. Lett. 88, 241116 (2006). [CrossRef]
  20. A. Vasdekis, G. Tsiminis, J. Ribierre, L. O’ Faolain, T. Krauss, G. Turnbull, and I. Samuel, "Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend," Opt. Express 14, 9211-9216 (2006). [CrossRef] [PubMed]
  21. Y. Yang, G. A. Turnbull, and I. D. W. Samuel, "Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode," Appl. Phys. Lett. 92, 163306 (2008). [CrossRef]
  22. C. G¨artner, C. Karnutsch, C. Pflumm and U. Lemmer, "Numerical Device Simulation of Double-Heterostructure Organic Laser Diodes Including Current-Induced Absorption Processes," IEEE J. Quant. Electron. 43, 1006-1017 (2007). [CrossRef]
  23. micro resist technology GmbH. http://www.microresist.de.
  24. H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, "Scaling laws of voxels in two-photon photopolymerization nanofabrication," Appl. Phys. Lett. 83, 1104-1106 (2003). [CrossRef]
  25. V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, "Study of lasing action based on F¨orster energy transfer in optically pumped organic semiconductor thin films," J. Appl. Phys. 84, 4096-4108 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited