OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 4 — Feb. 16, 2009
  • pp: 2538–2556

Optical excitation and detection of vapor bubbles around plasmonic nanoparticles

Dmitri Lapotko  »View Author Affiliations


Optics Express, Vol. 17, Issue 4, pp. 2538-2556 (2009)
http://dx.doi.org/10.1364/OE.17.002538


View Full Text Article

Enhanced HTML    Acrobat PDF (457 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser-induced generation of vapor bubbles in water around plasmonic nanoparticles was experimentally studied by optical scattering methods. Nanoparticle-generated bubbles spatially localize a laser-induced thermal field and also amplify the optical scattering relatively to that by gold nanoparticles. Bubble lifetimes and threshold fluencies were determined as functions of the parameters of a laser (pulse duration, fluence, interpulse interval), nanoparticle (size, shape, aggregation state), and of the sample chamber so as to optimize the conditions of bubble generation around plasmonic nanoparticles. Nanoparticle-generated bubbles are suggested as nano-sized optical sensors and sources of localized thermal and mechanical impact.

© 2009 Optical Society of America

OCIS Codes
(290.5850) Scattering : Scattering, particles
(350.4990) Other areas of optics : Particles
(350.5340) Other areas of optics : Photothermal effects

ToC Category:
Scattering

History
Original Manuscript: December 9, 2008
Revised Manuscript: January 13, 2009
Manuscript Accepted: January 19, 2009
Published: February 6, 2009

Citation
Dmitri Lapotko, "Optical excitation and detection of vapor bubbles around plasmonic nanoparticles," Opt. Express 17, 2538-2556 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-4-2538


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Schwartzberg and J. Z. Zhang, "Novel optical properties and emerging applications of metal nanostructures," J. Phys. Chem. 28, 10323-10337 (2008).
  2. O. Govorov and H. H. Richardson, "Generating heat with metal nanoparticles," Nano. Today 1, 30-38 (2007).
  3. L. François, M. Mostafavi, J. Belloni, J.-F. Delouis, J. Delaire, and P. Feneyrou, "Optical limitation induced by gold clusters. 1. Size effect," J. Phys. Chem. B 104, 6133-6137 (2000).
  4. Y. Seol, A. Carpenter, and T. Perkins, "Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating," Opt. Lett. 31, 2429-2431 (2006). [PubMed]
  5. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal imaging of nanometer-sized metal particles among scatterers," Science 297, 1160-1163 (2002). [PubMed]
  6. M. Pitsillides, E. K. Joe, X. Wei, R. R Anderson, and C. P. Lin, "Selective cell targeting with light-absorbing microparticles and nanoparticles," Biophys. J. 84, 4023-4032 (2003). [PubMed]
  7. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano. Lett. 5, 709-711 (2005). [PubMed]
  8. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West "Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy," Nano. Lett. 7, 1929-1934 (2007). [PubMed]
  9. L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, "Gold nanorods mediate tumor cell death by compromising membrane integrity," Adv. Mater. 19, 3136-3141 (2007).
  10. I. El-Sayed, X. Huang, and M. El-Sayed "Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles," Cancer Lett. 239, 129- 35 (2006).
  11. D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, "Therapeutic possibilities of plasmonically heated gold nanoparticles," Trend. Biotech. 24, 62-67 (2006).
  12. G. Skirtach, A. M. Javier, O. Kreft, K. Khler, A. P. Alberola, H. Mohwald, W. J. Parak, and G. B. Sukhorukov, "Laser-induced release of encapsulated materials inside living cells," Angew. Chem. Int. Ed. 45, 4612-4617 (2006).
  13. C. Murphy, A. Gole, J. Stone, P. Sisco, A Alkilany, E. Goldsmith, and S. C. Baxter, "Gold nanoparticles in biology: beyond toxicity to cellular imaging," Acc. Chem. Res. 41, 1721-1730 (2008). [PubMed]
  14. H. Liao, C. Nehl, and J. Hafner, "Biomedical applications of plasmon resonant metal nanoparicles," Nanomedicine 1,201-208 (2006).
  15. M. Hu and G. V. Hartland, "Heat dissipation for Au particles in aqueous solution: relaxation time versus size," J. Phys. Chem. B 106, 7029-7033 (2002).
  16. P. O'Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, "Photo-thermal tumor ablation in mice using near-infrared absorbing nanoparticles," Cancer Lett. 209, 171-176 (2004). [PubMed]
  17. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, "Cancer cell imaging and photothermal therapy in the near-infrared tegion by using gold nanorods," J. Am. Chem. Soc. 128, 2115-21202 (2006). [PubMed]
  18. T. B. Huff, L. Tong, M. Hansen, J. X. Cheng, and A. Wei, "Hyperthermic effects of gold nanorods on tumor cells," Nanomedicine 2, 125-132 (2007). [PubMed]
  19. X. Huang and P. K. Jain, and I. H. El-Sayed, and M. A. El-Sayed, "Plasmonic photothermal therapy (PPTT) using gold nanoparticles," Lasers Med. Sci. 23, 217-228 (2008).
  20. C. P. Lin and M. W. Kelly, "Cavitation and acoustic emission around laser-heated microparticles," Appl. Phys. Lett. 72, 2800-2802 (1998).
  21. D. L. Chamberland, A. Agarwal, N. Kotov, J. B. Fowlkes, P. L. Carson, and X. Wang, "Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent — an ex vivo preliminary rat study," Nanotechnology 19, 095101 (2008). [PubMed]
  22. S. Mallidi, T. Larson, J. Aaron, K. Sokolov, and S. Emelianov, "Molecular specific optoacoustic imaging with plasmonic nanoparticles," Opt. Express 11, 6583-6588 (2007).
  23. D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, "Method of laser activated nanothermolysis for elimination of tumor cells," Cancer Lett. 239, 36-45 (2006).
  24. D. Lapotko, E. Lukianova, and A. Oraevsky, "Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles," Lasers Surg. Med. 38, 631-642 (2006). [PubMed]
  25. Y. Hleb, J. H. Hafner, J. N. Myers, E. Y. Hanna, and D. O. Lapotko, "LANTCET: elimination of solid tumor cells with photothermal bubbles generated around clusters of gold nanoparticles," Nanomedicine 3, 648-667 (2008).
  26. D. M. Bartels, R. A. Crowell, T. E. McGrath, and G. J. Diebold, "Laser-initiated chemical reactions in carbon suspensions," J. Phys. Chem. A 106, 10072-10078 (2002).
  27. O. Yavas, P. Leiderer, H. Park, C. Grigoropoulos, C. Poon, W. Leung, N. Do, and A. Tam, "Optical reflectance and scattering studies of nucleation and growth of bubbles at a liquid-solid interface induced by pulsed laser heating," Phys. Rev. Lett. 70,1830-1833 (1993). [PubMed]
  28. G. M. Hansen, "Mie scattering as a technique for the sizing of air bubbles," Appl. Opt. 24, 3214-3220 (1985). [PubMed]
  29. J.-S. Jeon, I.-J. Yang, S.-W. Karng, and H.-Y. Kwak, "Radius measurement of a sonoluminescing gas bubble," Jpn. J. Appl. Phys. 39, 1124-1127 (2000).
  30. Q. Zhu, B. Chance, W. T. Jenkins, and Y. Zhang, "Enhanced optical scattering by microbubbles," Proc. SPIE 2979, 157-162 (1997).
  31. T. Kozuka, S. Hatanaka, K. Yasui, T. Tuziuti, and H. Mitome, "Simultaneous observation of motion and size of a sonoluminescing bubble," Jpn. J. Appl. Phys. 41, 3248-3249 (2002).
  32. C. Auger, R. G. Barrera, and B. Stou, "Optical properties of an eccentrically located pigment within an air bubble," Progress in Organic Coatings 49, 74-83 (2004).
  33. A. Kokhanovsky, "Optical properties of bubbles," J. Opt. A: Pure Appl. Opt. 5, 47-52 (2003).
  34. A. Vogel, N. Linz, S. Freidank, and G. Paltauf, "Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery," Phys. Rev. Lett. 100, 038102 (2008). [PubMed]
  35. E. Y. Hleb, Y. Hu, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, "Photothermal bubbles as optical scattering probes for imaging living cells," Nanomedicine 3, 797-812 (2008). [PubMed]
  36. J. Neumann and R. Brinkmann, "Boiling nucleation on melanosomes and microbeads transiently heated by nanosecond and microsecond laser pulses," J. Biomed. Opt. 10, 024001 (2005). [PubMed]
  37. S. L. Jacques and D. J. McAuliffe, "The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation," Photochem. Photobiol. 53, 769-775 (1991). [PubMed]
  38. J. Neumann and R. Brinkmann "Nucleation dynamics around single microabsorbers in water heated by nanosecond laser irradiation," J. Appl. Phys. 101, 114701 (2007).
  39. E. Faraggi, B. S. Gerstman, and J. Sun, "Biophysical effects of pulsed lasers in the retina and other tissues containing strongly absorbing particles: shockwave and explosive bubble generation," J. Biomed. Opt. 10, 064029 (2005).
  40. T. G. van Leeuwen, E. D. Jansen, A. J. Welch, and C. Borst, "Excimer laser-induced bubble: dimensions, theory, and implications for laser angioplasty," Lasers Surg. Med. 4, 381-390 (1996).
  41. M. Strauss, P. A. Amendt, R. A. London, D. J. Maitland, M. E. Glinsky, C. P. Lin, and M. W. Kelly, "Computational modeling of stress transient and bubble evolution in short-pulse laser irradiated melanosome particles," Proc. SPIE 2975, 261-270 (1997).
  42. A. Vogel, J. Noack, G. Hüttmann, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
  43. S. Gersman, "Theoretical modeling of laser induced explosive pressure generation and vaporization in pigmented cells," Proc. SPIE 3902, 41-52 (2000).
  44. I. Amendt, M. Strauss, R. A. London, M. E. Glinsky, D. J. Maitland, P. M. Celliers, S. R. Visuri, D. S. Bailey, D. A. Young, and D. Ho, "Modeling of bubble dynamics in relation to medical applications," in Laser-Tisstle Interaction 8, eds. (Proc. SPIE 2975, Bellingham, 1997), pp. 362-373.
  45. T.G. van Leeuwen, E. D. Jansen, M. Motamedi, A. J. Welch, and C. Borst, "Excimer laser ablation of soft tissue: a study of the content of rapidly expanding and collapsing bubbles," IEEE J. Quantum Electron. 30, 1339-1345 (1994).
  46. U. S. Sathyam, MS, A. Shearin, BS, E. A. Chasteney, MD, and S. A. Prahl "Threshold and ablation efficiency studies of microsecond ablation of gelatin under water,"Lasers Surg. Med. 19, 397-406 (1996). [PubMed]
  47. R. Brinkmann, C. Hansen, D. Mohrenstecher, M. Scheu, and R. Birngruber, "Analysis of cavitation dynamics during pulsed laser tissue ablation by optical on-line monitoring," IEEE J. Sel. Top. Quant. Electron. 2, 826-835 (1996).
  48. R. Brinkmann, G. Huttmann, J. Rogener, J. Roider, R. Birngruber, and C. P. Lin, "Origin of retinal pigment epithelium cell damage by pulsed laser irradiance in the nanosecond to microsecond time regimen," Lasers Surg. Med. 27, 451-64 (2000). [PubMed]
  49. R. R. Kaustubh, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, "Pulsed laser microbeam-induced cell lysis: time-resolved imaging and analysis of hydrodynamic effects," Biophys. J. 91, 317-329 (2006).
  50. T. Juhasz, G. A. Kastis, C. Suarez, Z. Bor, and W. E. Bron, "Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses," Lasers Surg. Med. 19, 23-31 (1996). [PubMed]
  51. S. Hutson and X. Ma "Plasma and cavitation dynamics during pulsed laser microsurgery in vivo," Phys. Rev. 99, 158104 (2007).
  52. J. Roegener and C. P. Lin, ‘‘Photomechanical effects: experimental studies of pigment granule absorption, cavitation, and cell damage,’’Proc. SPIE 3902, 35-40 (2000).
  53. J. Baumgart, W. Bintig, A. Ngezahayo, W. Ertmer, H. Lubatschowski, and A. Heisterkamp, "Live cell opto-injection by femtosecond laser pulses," Proc SPIE 6435, 643512 (2007).
  54. C. B. Schaffer, A. Brodeur, and E. Mazur, "Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses," Meas. Sci. Technol. 12, 1784-1794 (2001).
  55. N. del Fatti, C. Voisin, F. Chevy, F. Valleґe, and C. Flytzanis, "Coherent acoustic mode oscillation and damping in silver nanoparticles," J. Chem. Phys. 110, 11484 (1999).
  56. M. Hu, X. Wang, G.V. Hartland, V. Salgueirino-Maceira, and L. M. Liz-Marzan, "Heat dissipation in gold-silica core-shell nanoparticles," Chem. Phys. Lett. 372, 767-772 (2003).
  57. A. Plech, M. Wulff, S. Kürbitz, K.-J. Berg, G. Berg, H. Graener, S. Grésillon, M. Kaempfe, J. Feldmann,and G. von Plessen, "Time-resolved X-ray diffraction on laser-excited metal nanoparticles," Europhys. Lett. 61, 762-768 (2003).
  58. A. Plech, V. Kotaidis, S. Grersillon, C. Dahmen, and G. von Plessen, "Laser-induced heating and melting of gold nanoparticles studied by time-resolved X-ray scattering," Phys. Rev. B 70, 195423 (2004).
  59. K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, D. von der Linde, M. H. von Hoegen, A. Cavalleri, J.A. Squier, and M. Kammler, "Femtosecond X-ray measurement of ultrafast melting and large acoustic transients," Phys. Rev. Lett. 87, 225701 (2001). [PubMed]
  60. A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. von der Linde, "Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy," J. Appl. Phys. 85, 3301-3309 (1999).
  61. F. Schotte, S. Techert, P.A. Anfinrud, V. Srajer, K. Moffat, and M. Wulff, Third-generation hard X-ray synchrotron radiation sources D. Mills eds. (Wiley, New York, 2002), pp. 345-401.
  62. A. Plech, M. Wulff, S. Bratos, F. Mirloup, R. Vuilleumier, F. Schotte, and P. A. Anfinrud, "Visualizing chemical reactions in solution by picosecond X-ray diffraction," Phys. Rev. Lett. 92, 125505 (2004). [PubMed]
  63. V. Kotaidis and A. Plecha "Cavitation dynamics on the nanoscale," Appl. Phys. Lett. 87, 213102 (2005).
  64. V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech "Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water," J. Chem. Phys. 124, 184702 (2006). [PubMed]
  65. H. Farny, T. Wu, R. G. Holt, T. W. Murray, and R. A. Roy, "Nucleating cavitation from laser-illuminated nano-particles," Acoust. Res. Lett. Online 6, 138-143 (2005).
  66. L. François, M. Mostafavi, J. Belloni, and J. Delaire, "Optical limitation induced by gold clusters: Mechanism and efficiency," Phys. Chem. 3, 4965-4971 (2001).
  67. G. Huttmann and R. Birngruber, "On the possibility of high-precision optothermal microeffects and the measurement of fast thermal denaturation of proteins," IEEE J. Sel. Top. Quantum Electron. 5, 954-962 (1999).
  68. D. Lapotko, E. Lukianova, A. Shnip, G. Zheltov, M. Potapnev, A. Oraevsky, V. Savitskiy, and O. Klimovich "Photothermal microscopy and laser ablation of leukemia cells targeted with gold nanoparticles," Proc. SPIE 5697, 82-89 (2005).
  69. D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, "Elimination of leukemic cells from human transplants by laser nano-thermolysis," Proc. SPIE 6086, 135-142 (2006).
  70. A. N. Volkov, C. Sevilla, and L. V. Zhigilei "Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water," Appl. Surf. Sci. 253, 6394-6399 (2007).
  71. B. Krasovitski, H. Kislev, and E. Kimmel "Modeling photothermal and acoustical induced microbubble generation and growth," Ultrasonics 47,90-101, (2007). [PubMed]
  72. E. Y. Hleb and D. O. Lapotko, "Photothermal properties of gold nanoparticles under exposure to high optical energies," Nanotechnology 19, 355702 (2008). [PubMed]
  73. M. Otter, "Temperature dependance of the optical constants of heavy metals," Z. Phys. 161, 539-549 (1961).
  74. M. Hu and G. V. Hartland, "Investigation of the properties of gold nanoparticles in aqueous solution at extremely high lattice temperatures," Chem. Phys. Lett. 391, 220-225 (2004).
  75. A. Plech, R. Cerna, V. Kotaidis, F. Hudert, A. Bartels, and T. Dekorsy, "A surface phase transition of supported gold nanoparticles" Nano. Lett. 13, 17352505 (2007).
  76. S. Inasawa, M. Sugiyama, and Y. Yamaguchi, "Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting," J. Phys. Chem. B 109, 3104-3111 (2005).
  77. S. Inasawa, M. Sugiyama, S. Noda, and Y. Yamaguchi, "Spectroscopic study of laser-induced phase transition of gold nanoparticles on nanosecond time scales and longer," J. Phys. Chem. B 110, 3114-3119 (2006). [PubMed]
  78. H. Petrova, H. Min, and G. Hartland, "Photothermal properties of gold nanoparticles," Z. Phys. Chem. 221, 361-76 (2007).
  79. G. Hartland, "Measurement of the material properties of metal nanoparticles by time-resolved spectroscopy," Phys. Chem. Chem. Phys. 6, 5263-5274 (2004).
  80. S. Link and M. A. El-Sayed, "Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals," Internat. Rev. Phys. Chem. 19, 409-453 (2000).
  81. L. Rayleigh, "On the pressure developed in a liquid during the collapse of a spherical cavity," Philos. Mag. 34, 94-98 (1917).
  82. R. Gilmore, "The growth and collapse of a spherical bubble in a viscous compressible liquid," presented at California Institute of Technology Hydrodynamics. Laboratory Report 26(4), Pasadena, 1952.
  83. C. E. Brennen, Cavitation and bubble dynamics: (Oxford University Press, Oxford Engineering Science, New York, 1995), pp. 44.
  84. C.-D. Ohl, T. Kurz, R. Geisler, O. Lindau, and W. Lauterborn, "Bubble dynamics, shock waves and sonoluminescence," Philos. Trans. R. Soc. London Ser. A 357, 269-294 (1999).
  85. D. Lapotko, E. Lukianova-Hleb, and A. Oraevsky, "Clusterization of nanoparticles during their interaction with living cells," Nanomedicine 2, 241-253 (2007). [PubMed]
  86. W.C.W. Chan and B. D. Chithrani, "Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes," Nano. Lett. 7, 1542-1550 (2007). [PubMed]
  87. J. Yguerabide and E. E. Yguerabide, "Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. II. Experimental characterization," Anal. Biochem. 262, 157-176 (1998). [PubMed]
  88. O. C. Farokhzad, S. Jon, A. Khademhosseini, T. N. T. Tran, D. A. LaVan, and R. Langer, "Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells," Cancer Res. 64, 7668-7672 (2004). [PubMed]
  89. C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussenegg, V. Chan, J. Spatz, and M. Möller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
  90. K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003). [PubMed]
  91. O. Siiman, K. Gordon, A. Burshteyn, J. Maples, and J. Whitesell, "Immunophenotyping using gold or silver nanoparticle-polystyrene bead conjugates with multiple light scatter," Cytometry 41, 298-307 (2000). [PubMed]
  92. R. Drezek, M. Faupel, C. Pitris, M. Feld, M. Brewer, R. Richards-Kortum, and M. Follen, "Optical imaging for the detection of cervical precancers in vivo," Cancer 98, 2015-2027 (2003). [PubMed]
  93. P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, "Au nanoparticles target cancer," Nano. Today 2, 18-29 (2007).
  94. K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, "Optical systems for in vivo molecular imaging of cancer," Technol. Cancer Res. Treat. 2, 491-504 (2003). [PubMed]
  95. A. C. Tam, "Overview of photothermal spectroscopy," in Photothermal investigation of solids and fluids, J. A. Sell eds. (Acad. Press, 1988) pp.1-34.
  96. D. Lapotko, K. Lukianova, and A. Shnip, "Photothermal responses of individual cells," J. Biomed. Opt. 10, 14006 (2005). [PubMed]
  97. E. Antononi and M. Brunoni, Hemoglobin and mioglobin and their reaction with ligands (North-Holland, Amsterdam,1997).
  98. D. Lapotko and K. Lukianova, "Laser-induced micro-bubbles in cells," Int. J. Heat Mass Transfer 48, 227-234 (2005).
  99. G. Paltauf and P. E. Dyer, "Photomechanical processes and effects in ablation," Chem. Rev. 103, 487-518 (2003). [PubMed]
  100. G.I. Zheltov, V. A. Lisinetskii, A. S. Grabtchikov, and V.A. Orlovich, "Low-threshold cavitation in water using IR laser pulse trains," Appl. Opt. 47, 3549 - 3554 (2008). [PubMed]
  101. P.A. Dayton, J. E. Chomas, A. F. H. Lunn, J. S. Allen, J. R. Lindner, S. I. Simon, and K. W. Ferrara, "Optical and acoustical dynamics of microbubble contrast agents inside neutrophils," Biophys. J. 80, 1547-1556 (2001). [PubMed]
  102. C. P. Lin, M. W. Kelly, S. A. B. Sibayan, M. A. Latina, and R. R.  Anderson, "Selective cell killing by microparticle absorption of pulsed laser radiation," IEEE J. Sel. Top. Quantum Electron. 5, 963-968 (1999).
  103. S. Hutson and X. Ma, "Plasma and cavitation dynamics during pulsed laser microsurgery in vivo," Phys. Rev. Lett. 99, 158104 (2007). [PubMed]
  104. B. Schaffer, N. Nishimura, E. N. Glezer, A. M. T. Kim, and E. Mazur, "Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds," Opt. Express 10, 196-203 (2002). [PubMed]
  105. M. J. Zohdy, C. Tse, Jing Yong Ye, and M. O`Donnell, "Optical and acoustic detection of laser-generated microbubbles in single cells," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 117-125 (2006). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited