OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 4 — Feb. 16, 2009
  • pp: 2646–2657

Suspended nanowires: Fabrication, design and characterization of fibers with nanoscale cores

Heike Ebendorff-Heidepriem, Stephen C. Warren-Smith, and Tanya M. Monro  »View Author Affiliations

Optics Express, Vol. 17, Issue 4, pp. 2646-2657 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1186 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a new approach for the fabrication of nanowires: the direct drawing of optical fibers with air suspended nanoscale cores. The fibers were made from lead silicate glass using the extrusion technique for preform and jacket tube fabrication. Fibers with core diameters in the range of 420–720 nm and practical outer diameters of 110–200 μm were produced, the smallest core sizes produced to date within optical fibers without tapering. We explored the impact of the core size on the effective mode area and propagation loss of these suspended nanowires relative to circular nanowires reported to date. As for circular nanowires, the propagation loss of these suspended nanowires is dominated by surface roughness induced scattering.

© 2009 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2280) Fiber optics and optical communications : Fiber design and fabrication

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: November 25, 2008
Revised Manuscript: January 29, 2009
Manuscript Accepted: February 1, 2009
Published: February 9, 2009

Heike Ebendorff-Heidepriem, Stephen C. Warren-Smith, and Tanya M. Monro, "Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores," Opt. Express 17, 2646-2657 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12, 854-858 (2001). [CrossRef]
  2. J. Lou, L. Tong, and Z. Ye, "Modeling of silica nanowires for optical sensing," Opt. Express 13, 2135-2140 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-6-2135. [CrossRef] [PubMed]
  3. K. J. Rowland, S. Afshar V., and T. M. Monro, "Nonlinearity enhancement of filled microstructured fibers operating in the nanowire regime," in Proc. Optical Fiber Communication Conference (Anaheim, 2006), paper OTuH3.
  4. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, "Nonlinear optics in photonic nanowires," Opt. Express 16, 1300-1320 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-2-1300. [CrossRef] [PubMed]
  5. Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, "Detection of quantum-dot labeled proteins using soft glass microstructured optical fibers," Opt. Express 15, 17819-17826 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17819. [CrossRef] [PubMed]
  6. S. Afshar V., S. C. Warren-Smith, and T. M. Monro, "Enhancement of fluorescence-based sensing using microstructured optical fibers," Opt. Express 15, 17891-17901 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17891. [CrossRef]
  7. L. Dong, B. K. Thomas, and L. Fu, "Highly nonlinear silica suspended core fibers," Opt. Express 16, 16423-16430 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-21-16423. [CrossRef] [PubMed]
  8. T. G. Euser, J. S. Y. Chen, M. Scharrer, and P. St. J. Russell, "Quantitative broadband chemical sensing in air-suspended solid-core fibers," J. Appl. Phys. 103, 103108 (2008). [CrossRef]
  9. A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, "Suspended core holey fiber for evanescent-field sensing," Opt. Eng. 46, 010503, (2007). [CrossRef]
  10. J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E.  Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, "High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-μm pumped supercontinuum generation," J. Lightwave Technol.  24, 183-190 (2006). [CrossRef]
  11. D.I. Yeon, E. C. Magi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B J. Eggleton, "Low-energy threshold supercontinuum generated in highly nonlinear As2Se3 chalcogenide submicron tapers," in Proc. CLEO/QELS Conference (San Jose, 2008), paper CMDD6.
  12. E. C. Magi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, "Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers," Opt. Express 15, 10324-10329 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-16-10324. [CrossRef] [PubMed]
  13. V. Finazzi, A theoretical study into the fundamental design limits of devices based on one- and two-dimensional structured fibres (PhD thesis, University of Southampton, 2003). [PubMed]
  14. G. Brambilla, V. Finazzi, and D. J. Richardson, "Ultra-low-loss optical fiber nanotapers," Opt. Express 12, 2258-2263 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-10-2258. [CrossRef] [PubMed]
  15. G. Brambilla, F. Koizumi, X. Feng, and D. J. Richardson, "Compound-glass optical nanowires," Electron. Lett. 41, 400-402 (2006). [CrossRef]
  16. G. Brambilla, F. Xu, and X. Feng, "Fabrication of optical fibre nanowires and their optical and mechanical characterisation," Electron. Lett. 42, 517-519 (2006). [CrossRef]
  17. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature  426, 816-819 92003). [CrossRef] [PubMed]
  18. L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, "Photonic nanowires directly drawn from bulk glasses," Opt. Express 14, 82-87 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-1-82. [CrossRef] [PubMed]
  19. L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, "Assembly of silica nanowires on silica aerogels for microphotonic devices," Nanoletters 2, 259-262 (2005). [CrossRef]
  20. G. Vienne, Y. Li, and L. Tong, "Microfiber knot resonator in polymer matrix (Invited)," IEICE Trans. Electron.E 90-C, 415-421 (2007). [CrossRef]
  21. F. Xu, P. Horak, and G. Brambilla, "Optical microfiber coil resonator refractometric sensor," Opt. Express 15, 7888-7893 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-12-7888. [CrossRef] [PubMed]
  22. N. A. Wolchover, F. Luan, A. K. George, J. C. Knight, and F. G. Omenetto, "High nonlinearity glass photonic crystal nanowires," Opt. Express 15, 829-833 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-3-829. [CrossRef] [PubMed]
  23. Y. K. Lize, E. C. Magi, V. G. Ta’eed, J. A. Bolger, P. Steinvurzel, and B. J. Eggleton, "Microstructured optical fiber photonic wires with subwavelength core diameter," Opt. Express 12, 3209-3217 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-14-3209. [CrossRef] [PubMed]
  24. X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson "Extruded single-mode, high-nonlinearity tellurite glass holey fiber," Electron. Lett. 41, 835-837 (2005). [CrossRef]
  25. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, D. J.  Richardson, and T. M. Monro, "Bismuth glass holey fibers with high nonlinearity," Opt. Express 12, 5082-5087 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-21-5082. [CrossRef] [PubMed]
  26. H. Ebendorff-Heidepriem, and T. M. Monro, "Extrusion of complex preforms for microstructured optical fibers," Opt. Express 15, 15086-15092 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15086. [CrossRef] [PubMed]
  27. http://www.schott.com/advanced_optics/english/our_products/materials/optical_glass.html.
  28. W. Vogel, Glass Chemistry (Springer-Verlag Berlin Heidelberg New York, 1994), pp. 421-423.
  29. K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, San Diego, 2000).
  30. H. Ebendorff-Heidepriem, Y. Li, and T. M. Monro, "Reduced loss in extruded soft glass microstructured optical fibre," Electron. Lett. 43, 1343-1345 (2007). [CrossRef]
  31. M. Sumetsky, "How thin can a microfiber be and still guide light?," Opt. Lett. 31, 870-872 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-7-870. [CrossRef] [PubMed]
  32. M. Sumetsky, "How thin can a microfiber be and still guide light? Errata," Opt. Lett. 31, 3577-3578 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-24-3577. [CrossRef]
  33. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Loss in solid-core photonic crystal fibers due to interface roughness scattering," Opt. Express 13, 7779-7793 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-20-7779. [CrossRef] [PubMed]
  34. G. Zhai, and L. Tong, "Roughness-induced radiation losses in optical micro or nanofibers," Opt. Express 15, 13805-13816 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-21-13805. [CrossRef]
  35. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Thomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Ultimate low loss of hollow-core photonic crystal fibers," Opt. Express 13, 236-244, (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-1-236. [CrossRef] [PubMed]
  36. P. K. Gupta, D. Inniss, C. R. Kurkjian, and Q. Zhong, "Nanoscale roughness of oxide glass surfaces," J. Non-Cryst. Solids 262, 200-206 (2000). [CrossRef]
  37. E. Radlein, and G. H. Frischat, "Atomic force microscopy as a tool to correlate nanostructure to properties of glasses," J. Non-Cryst. Solids 222, 69-82 (1997)
  38. P. W. France, Fluoride glass optical fibres (CRC Press, 1990).
  39. N. P. Bansal, and R. H. Doremus, J. Am. Ceram. Soc. 67, C197-C197 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited