OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 4 — Feb. 16, 2009
  • pp: 2686–2695

Synthesized femtosecond laser pulse source for two-wavelength contouring with simultaneously recorded digital holograms

Thomas Hansel, Günter Steinmeyer, Ruediger Grunwald, Claas Falldorf, Jens Bonitz, Christian Kaufmann, Volker Kebbel, and Uwe Griebner  »View Author Affiliations


Optics Express, Vol. 17, Issue 4, pp. 2686-2695 (2009)
http://dx.doi.org/10.1364/OE.17.002686


View Full Text Article

Enhanced HTML    Acrobat PDF (7587 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A dual-wavelength femtosecond laser pulse source and its application for digital holographic single-shot contouring are presented. The synthesized laser source combines sub-picosecond time scales with a wide reconstruction range. A center wavelength distance of the two separated pulses of only 15 nm with a high contrast was demonstrated by spectral shaping of the 50 nm broad seed spectrum centered at 800 nm. Owing to the resulting synthetic wavelength, the scan depth range without phase ambiguity is extended to the 100-μm-range. Single-shot dual-wavelength imaging is achieved by using two CMOS cameras in a Twyman-Green interferometer, which is extended by a polarization encoding sequence to separate the holograms. The principle of the method is revealed, and experimental results concerning a single axis scanner mirror operating at a resonance frequency of 0.5 kHz are presented. Within the synthetic wavelength, the phase difference information of the object was unambiguously retrieved and the 3D-shape calculated. To the best of our knowledge, this is the first time that single-shot two-wavelength contouring on a sub-ps time scale is reported.

© 2009 Optical Society of America

OCIS Codes
(090.2880) Holography : Holographic interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(090.1995) Holography : Digital holography

ToC Category:
Holography

History
Original Manuscript: November 24, 2008
Revised Manuscript: January 16, 2009
Manuscript Accepted: January 25, 2009
Published: February 10, 2009

Citation
Thomas Hansel, Günter Steinmeyer, Ruediger Grunwald, Claas Falldorf, Jens Bonitz, Christian Kaufmann, Volker Kebbel, and Uwe Griebner, "Synthesized femtosecond laser pulse source for two-wavelength contouring with simultaneously recorded digital holograms," Opt. Express 17, 2686-2695 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-4-2686


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. Liu, M. Centurion, G. Panotopoulus, J. Hong, and D. Psaltis, "Holographic recording of fast events on a CCD camera," Opt. Lett. 27, 22-24 (2002). [CrossRef]
  2. L. O. Heflinger, R. F. Wuerker, and R. E. Brooks, "Holographic Interferometry," J. Appl. Phys. 37, 642-649 (1966). [CrossRef]
  3. T. Tschudi, C. Yamanaka, T. Sasaki, K. Yoshida, and K. Tanaka, "A study of high-power laser effects in dielectrics using multiframe picosecond holography," J. Phys. D11, 177-180 (1978).
  4. W. Hentschel and W. Lauterborn, "High-Speed Holographic Movie Camera," Opt. Eng. 24, 687-691 (1985).
  5. P. Picart, J. Leval, D. Mounier, and S. Gougeon, "Time-averaged digital holography," Opt. Lett. 28, 1900-1902 (2003). [CrossRef] [PubMed]
  6. U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques, (Springer Verlag, 2005).
  7. B. P. Hildebrand, and K. A. Haines,"Multiple-wavelength and multiple-source holography applied to contour generation," J. Opt. Soc. Am. 57, 155-162 (1967). [CrossRef]
  8. A. A. Friesem and U. Levy, "Fringe formation in two-wavelength contour holography," Appl. Opt. 15, 3009-3020 (1976). [CrossRef] [PubMed]
  9. T. Gessner, J. Bonitz, C. Kaufmann, S. Kurth, and H. Specht, "MEMS based micro scanners: Components, Technologies and Applications," Actuator 2006, 10th Intern. Conf. on New Actuators, 193-198 (2006).
  10. U. Schnars and W. Jüptner, "Direct recording of holograms by a CCD target and numerical reconstruction," Appl. Opt. 33, 179-181 (1994). [CrossRef] [PubMed]
  11. C. Wagner, W. Osten, and S. Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85 (2000). [CrossRef]
  12. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, "Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition," Opt. Express 15, 7231-7242 (2007). [CrossRef] [PubMed]
  13. X. Wang, H. Zhai, and G. Mu, "Pulsed digital holography system recording ultrafast process of the femtosecond order," Opt. Lett. 31, 1636-1638 (2006). [CrossRef] [PubMed]
  14. G. Pedrini, P. Froening, H. J. Tiziani, and M. E. Gusev, "Pulsed digital holography for high-speed contouring that uses a two-wavelength method," Appl. Opt. 38, 3460-3467 (1999). [CrossRef]
  15. J. F. Xia, J. Song, and D. Strickland, "Development of a dual-wavelength Ti:sapphire multi-pass amplifier and its application to intense mid-infrared generation," Opt. Commun. 206, 149-157 (2002). [CrossRef]
  16. Z. Zhang, A. M. Deslauriers, and D. Strickland, "Dual-wavelength chirped-pulse amplification system," Opt. Lett. 25, 581-583 (2000). [CrossRef]
  17. C. P. J. Barty, G. Korn, F. Raksi, C. Rose-Petruck, J. Squier, A.-C. Tien, K. R. Wilson, V. V. Yakovlev, and K. Yamakawa, "Regenerative pulse shaping and amplification of ultrabroadband optical pulses," Opt. Lett. 21, 219-221 (1996). [CrossRef] [PubMed]
  18. A. Leitenstorfer, C. Fürst, and A. Laubereau, "Widely tunable two-color mode-locked Ti:sapphire laser with pulse jitter of less than 2 fs," Opt. Lett. 20, 916-918 (1995) [CrossRef] [PubMed]
  19. P. de Groot and S. Kishner, "Synthetic wavelength stabilization for two-color laser-diode interferometry," Appl. Opt. 30, 4026-4033 (1991). [CrossRef] [PubMed]
  20. E. N. Leith and J. Upatnieks, "Reconstructed wavefronts and communication theory," J. Opt. Soc. Am. 52, 1123-1130 (1962). [CrossRef]
  21. W. Lauterbach and T. Kurz, Coherent Optics: fundamentals and applications, (Springer Verlag, 2003).
  22. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, (Wiley & Sons Inc., 1991).
  23. M. Hentschel, Z. Cheng, F. Krausz, and C. Spielmann, "Generation of 0:1-TWoptical pulses with a single stage Ti:sapphire amplifier at a 1-kHz repetition rate," Appl. Phys. B 70, 161-164 (2000).
  24. M. Takeda, I. Ina, and S. Kobayashi, "Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry," J. Opt. Soc. Am. 72, 156-160 (1982). [CrossRef]
  25. U. Schnars, T. M. Kreis, and W. Jüptner, "Digital recording and numerical reconstruction of holograms: reduction of the spatial frequency spectrum," Opt. Eng. 35, 977-982 (1996). [CrossRef]
  26. T. Kreis, Holographic Interferometry: Principles and Methods (Akademie Verlag, 1996).
  27. J. W. Goodman, Introduction to Fourier Optics, 3rd ed., (Roberts & Company Publishers, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited