OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 4 — Feb. 16, 2009
  • pp: 2871–2879

Metal nano-grid reflective wave plate

Y. Pang and R. Gordon  »View Author Affiliations


Optics Express, Vol. 17, Issue 4, pp. 2871-2879 (2009)
http://dx.doi.org/10.1364/OE.17.002871


View Full Text Article

Enhanced HTML    Acrobat PDF (162 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an optical wave plate using a metal nano-grid. The wave plate operates in reflection mode. A single-mode truncated mode-matching theory is presented as a general method to design such nano-grid wave plates with the desired phase difference between the reflected TM and TE polarizations. This analytical theory allows angled incidence calculations as well, and numerical results agree-well with comprehensive finite-difference time-domain electromagnetic simulations. Due to the subwavelength path-length, the reflective wave plate is expected to have improved broad-band functionality over existing zero-order transmissive wave plates, for which an example is provided. The proposed wave plate is simple and compact, and it is amenable to existing nanofabrication techniques. The reflective geometry is especially promising for applications including liquid-crystal displays and laser feedback experiments.

© 2009 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(230.5440) Optical devices : Polarization-selective devices
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: December 22, 2008
Revised Manuscript: February 5, 2009
Manuscript Accepted: February 10, 2009
Published: February 11, 2009

Citation
Y. Pang and R. Gordon, "Metal nano-grid reflective wave plate," Opt. Express 17, 2871-2879 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-4-2871


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickmann, "Birefringence in two-dimensional bulk photonic crystals applied to the construction of quarter waveplates," Opt. Express 11, 125 - 133 (2003). [CrossRef] [PubMed]
  2. D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickmann, "Experimental demonstration of photonic crystal waveplates," Appl. Phys. Lett. 82, 1036 - 1038 (2003). [CrossRef]
  3. Y. Inoue, Y. Ohmori, M. Kawachi, S. Ando, T. Sawada, and H. Takahashi, "Polarization mode converter with polyimide half waveplate in silica-based planar lightwave circuits," IEEE Photon. Technol. Lett. 6, 626-628 (1994). [CrossRef]
  4. E. M. Korenic, S. D. Jacobs, J. K. Houghton, A. Schmid, and F. Kreuzer, "Nematic polymer liquid-crystal wave plate for high power lasers at 1054-nm," Appl. Opt. 33, 1889-1899 (1994). [CrossRef] [PubMed]
  5. A. M. Radojevic, R. M. Osgood, M. Levy, A. Kumar, and H. Bakhru, "Zeroth-order half-wave plates of LiNbO3 for integrated optics applications at 1.55 mu m," IEEE Photon. Technol. Lett. 12, 1653-1655 (2000). [CrossRef]
  6. D. Kim and E. Sim, "Segmented coupled-wave analysis of a curved wire-grid polarizer," J. Opt. Soc. Am. A 25, 558 - 565 (2008). [CrossRef]
  7. P. Deguzman and G. Nordin, "Stacked subwavelength gratings as circular polarization filters," Appl. Opt. 40, 5731 - 5737 (2001). [CrossRef]
  8. J. B. Young, H. A. Graham, and E. W. Peterson, "Wire grid infrared polarizer," Appl. Opt. 4, 1023-1026 (1965). [CrossRef]
  9. P. K. Cheo and C. D. Bass, "Efficient wire-grid duplexer polarizer for CO2 lasers," Appl. Phys. Lett. 18, 565-567 (1971). [CrossRef]
  10. J. Wang, W. Zhang, X. Deng, J. Deng, F. Liu, P. Sciortino, and L. Chen, "High-performance nanowire-grid polarizers," Opt. Lett. 30, 195-197 (2005). [CrossRef] [PubMed]
  11. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, A. N. L. Chen, and A. Graham, "Innovative high-performance nanowire-grid polarizers and integrated isolators," IEEE J. Sel. Top. Quantum Electron. 11, 241-253 (2005). [CrossRef]
  12. J. Wang, F. Liu, and X. Deng, "Monolithically integrated circular polarizers with two-layer nano-gratings fabricated by imprint lithography," J. Vac. Sci. Technol. B 23, 3164-3167 (2005). [CrossRef]
  13. D. Kim, "Polarization characteristics of a wire-grid polarizer in a rotating platform," Appl. Opt. 44, 1366-1371 (2005). [CrossRef] [PubMed]
  14. Z. Yang and Y. Lu, "Broadband nanowire-grid polarizers in ultraviolet-visible near-infrared regions," Opt. Express 15, 9510 - 9519 (2007). [CrossRef] [PubMed]
  15. A. Vengurlekar, "Polarization dependence of optical properties of metallodielectric gratings with subwavelength grooves in classical and conical mounts," J. Appl. Phys. 104, 023,109-1 - 023,109-8 (2008). [CrossRef]
  16. H. Tamada, T. Doumuki, T. Yamaguchi, and S. Matsumoto, "Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-mu m-wavelength band," Opt. Lett. 22, 419 - 421 (1997). [CrossRef] [PubMed]
  17. Y. Ekinci, H. H. Solak, C. David, and H. Sigg, "Bilayer Al wire-grids as broadband and high-performance polarizers," Opt. Express 14, 2323 - 2334 (2006). [CrossRef] [PubMed]
  18. H. S. Cole and R. A. Kashnow, "New reflective dichroic liquid-crystal display device," Appl. Phys. Lett. 30, 619-621 (1977). [CrossRef]
  19. S. J. Jiang, Z. Q. Pan, M. Dagenais, R. A. Morgan, and K. Kojima, "High-frequency polarization self-modulation in vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 63, 3545-3547 (1993). [CrossRef]
  20. X. Liu, X. Deng, J. P. Sciortino, M. Buonanno, F. Walters, R. Varghese, J. Bacon, L. Chen, N. O’Brien, and J. J. Wang, "Large area, 38 nm half-pitch grating fabrication by using atomic spacer lithography from aluminum wire grids," Nano Lett. 6, 2723 - 2727 (2006). [CrossRef] [PubMed]
  21. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, "30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography," Appl. Phys. Lett. 89, 141,105-1 - 141,105-3 (2006).
  22. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046,802-1 - 046,802-4 (2005). [CrossRef]
  23. E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969). [CrossRef]
  24. Z. M. Zhu and T. G. Brown, "Nonperturbative analysis of cross coupling in corrugated metal films," J. Opt. Soc. Am. A 17, 1798-1806 (2000). [CrossRef]
  25. Y. Liu and S. Blair, "Fluorescence transmission through 1-D and 2-D periodic metal films," Opt. Express 12, 3686 - 3693 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: MPG (660 KB)      QuickTime
» Media 2: MPG (400 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited