OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 4 — Feb. 16, 2009
  • pp: 2926–2937

Analysis of coupling efficiency on hemispherical fiber lens by method of lines

Zainuddin Lambak, Faidz Abdul Rahman, Mohd Ridzuan Mokhtar, and Imran A. Tengku  »View Author Affiliations


Optics Express, Vol. 17, Issue 4, pp. 2926-2937 (2009)
http://dx.doi.org/10.1364/OE.17.002926


View Full Text Article

Enhanced HTML    Acrobat PDF (478 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The method of lines (MoL) has been developed to study coupling efficiency on hemispherical lens. In this paper, the physical shape of the lens is approximated by cascading a number of straight waveguide segments. The perfectly matched layer (PML) is applied as an absorber for the MoL to reduce numerical reflection in the simulation region. Analysis is done by calculating coupling efficiency at the plane of integration where the coupling efficiency is an overlap integral between laser diode field and fiber field. The result of coupling efficiency in this analysis is compared to the experiment and ABCD matrix. It is found that MoL gives good result accuracy.

© 2009 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2340) Fiber optics and optical communications : Fiber optics components

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 10, 2008
Revised Manuscript: November 29, 2008
Manuscript Accepted: January 5, 2009
Published: February 12, 2009

Citation
Zainuddin Lambak, Faidz Abdul Rahman, Mohd Ridzuan Mokhtar, and Imran A. Tengku, "Analysis of coupling efficiency on hemispherical fiber lens by method of lines," Opt. Express 17, 2926-2937 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-4-2926


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Gangopadhyay and S. Sarkar, "ABCD matrix for reflection and refraction of Gaussian light beams at surfaces of hyperboloid of revolution and efficiency computation for laser diode to single-mode fiber coupling by way of a hyperbolic lens on the fiber tip," Appl. Opt. 36, 8582-8586 (1997). [CrossRef]
  2. K. Sambanthan and F. A. Rahman, "Method to improve the coupling efficiency of a hemispherically lensed asymmetric tapered-core fiber," Opt. Commun. 254, 112-118 (2005). [CrossRef]
  3. W. L. Emkey and C. A. Jack, "Analysis and evaluation of graded-index fiber-lenses," J. Lightwave Technol. 12, 1156-1164 (1987). [CrossRef]
  4. R. Scarmozzino, A. Gopinath, R. Pregla and S. Helfert, "Numerical techniques for modeling guided-wave photonic devices," IEEE J. Sel. Top. Quantum Electron. 6, 150-162 (2000). [CrossRef]
  5. J. Yamauchi, K. Nishio and H. Nakano, "Analysis of a lensed coreless fiber by a hybrid technique combining FD-BPM and FD-TDM," J. Lightwave Technol. 16, 465-471 (1998). [CrossRef]
  6. Z. Wang, B. Mikkelsen, B. Pedersen, K. E. Stubkjaer and D. S. Olesen, "Coupling between angled-facet amplifiers and tapered lens-ended fibers," J. Lightwave Technol. 9, 49-55 (1991). [CrossRef]
  7. Y. He, S. K. Mondal and F. G. Shi, "Design optimization of wedge-shaped lensed fibers for fiber-laser coupling: Fresnel reflection and non-Gaussian mode effects," J. Lightwave Technol. 21, 2271-2275 (2003). [CrossRef]
  8. K. Okamakoto, Fundamental of Optical Waveguides (Academic Press, California, 2000).
  9. T. Wongcharoen, B. M. A. Rahman, M. Rajarajan and K. T. V. Grattan, "Spot-size conversion using uniform waveguide sections for efficient laser-fiber coupling," J. Lightwave Technol. 19, 708-716 (2001). [CrossRef]
  10. M. Rajarajan, B. M. A. Rahman and K. T. V. Grattan, "Numerical study of spot-size expanders for an efficient OEIC to SMF coupling," IEEE Photonics Technol. Lett. 10, 1082-1084 (1998). [CrossRef]
  11. M. N. O. Sadiku and C. N. Obiozor, "A simple introduction to the method of lines," Int. J. Electr. Eng. Educ. 37, 282-296 (2000).
  12. W. Huang and R. R. A. Syms, "Analysis of folded erbium-doped planar waveguide amplifiers by the method of lines," J. Lightwave Technol. 17, 2658-2664 (1999). [CrossRef]
  13. H. A. Jamid, M. Z. M. Khan and M. Ameeruddin, "A compact 90◦ three-branch beam splitter based on resonant coupling," J. Lightwave Technol. 23, 3900-3906 (2005). [CrossRef]
  14. A. Abdullah and M. A. Majid, "Analysis of multi-layer ARROW," J. Microwaves Optoelectron. 3, 1-8 (2003).
  15. A. Dreher and R. Pregla, "Analysis of planar waveguides with the method of lines and absorbing boundary conditions," IEEE Microwave Guided Wave Lett. 1, 138-140 (1991). [CrossRef]
  16. B. Engquist and A. Majda, "Absorbing boundary conditions for the numerical simulation of waves," Math. Comp. 31, 629-651 (1977). [CrossRef]
  17. G. R. Hadley, "Transparent boundary condition for the beam propagation method," IEEE J. Quantum Electron. 28, 363-370 (1992). [CrossRef]
  18. D. Weiping and Z. Linchang, "An improvement algorithm of Mur’s First-Order absorbing boundary condition," in IEEE 1997 International Symposium on Electromagnetic Compatibility, (Austin,USA 1997), pp. 592-595.
  19. C. Vassallo and F. Collino, "Highly efficient absorbing boundary conditions for the beam propagation method," J. Lightwave Technol. 14, 1570-1577 (1996). [CrossRef]
  20. H. A. Jamid, "Enhanced PML performance using higher order approximation," IEEE Trans. Microwave Theory Tech. 52, 1166-1174 (2004). [CrossRef]
  21. M. Z. M. Khan, "Analysis of one and two dimensional bandgap structures using automated method of lines with arbitrary longitudinal discontinuities," Master dissertation, (King Fahd University of Petroleum and Minerals, Saudi Arabia, 2004).
  22. A. A. Shittu, "Study of periodic waveguides by the finite-difference time domain method and the method of lines," PhD dissertation, (King Fahd University of Petroleum and Minerals, Saudi Arabia, 1994).
  23. J. John, T. S. M. Maclean, H. Ghafouri-Shiraz and J. Niblett, "Matching of single-mode fibre to laser diode by microlenses at 1.5 μm wavelength," IEE Proc.-Optoelectron. 141,178-184 (1994). [CrossRef]
  24. W. T. Chen and L. A. Wang, "Out-of-plane optical coupling between an elliptical Gaussian beam and an angled single-mode fiber," J. Lightwave Technol. 16, 1589-1595 (1998). [CrossRef]
  25. F. A. Rahman, K. Takahashi and C. H. Teik, "A scheme to improve the coupling efficiency and working distance between laser diode and single mode fiber," Opt. Commun. 208,103-110 (2002). [CrossRef]
  26. J. Alda, "Laser and Gaussian beam propagation and transformation," in Encyclopedia of Optical Engineering, R. G. Driggers (Marcel Dekker, New York, 2003), pp. 999-1013.
  27. T. Saitoh, T. Mukai and O. Mikami, "Theoretical analysis and fabrication of antireflection coatings on laser-diode facets," J. Lightwave Technol. LT-3, 288-293 (1985). [CrossRef]
  28. C. A. Edwards, H. M. Presby and L. W. Stulz, "Effective reflectivity of hyperbolic microlenses," Appl. Opt. 32, 2099-2103 (1993). [CrossRef] [PubMed]
  29. H. Kuwahara, Y. Onoda, M. Goto and T. Nakagami, "Reflected light in the coupling of semiconductor lasers with tapered hemispherical end fibers," Appl. Opt. 22, 2732-2738 (1983). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited