OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 4 — Feb. 16, 2009
  • pp: 2976–2983

Lasing with well-defined cavity modes in dye-infiltrated silica inverse opals

Yoshiaki Nishijima, Kosei Ueno, Saulius Juodkazis, Vygantas Mizeikis, Hideki Fujiwara, Keiji Sasaki, and Hiroaki Misawa  »View Author Affiliations

Optics Express, Vol. 17, Issue 4, pp. 2976-2983 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (541 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Lasing in dye solution-embedded inverse silica opal structures was investigated. The opal films were prepared by sedimentation of polystyrene microspheres on a cover glass. The polystyrene structures were inverted using sol-gel infiltration of silica and subsequent removal of polystyrene. Photoluminescence of rhodamine (rhodamine B, 6G and sulfo-rhodamine 101) dye solutions embedded into the inverse silica opal structures exhibited clear signatures of the lasing via a distributed feedback (DFB) and gain modulation. The refractive index contrast between the dye and the inverse opal was small enough (~ 0.03%) for the formation of refractive index coupling between the lasing modes. The lasing spectrum exhibited a highly regular periodic structure of modal peaks, rather than the chaotic superposition of peaks reported in previous studies. Lasing modes having a spectral width of about 0.25 nm and a free spectral range of about 0.75 nm appeared at the position of the maximum gain (the maximum fluorescence of the dye).

© 2009 Optical Society of America

OCIS Codes
(140.2050) Lasers and laser optics : Dye lasers
(160.3380) Materials : Laser materials
(160.5298) Materials : Photonic crystals

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 19, 2008
Revised Manuscript: February 8, 2009
Manuscript Accepted: February 11, 2009
Published: February 12, 2009

Yoshiaki Nishijima, Kosei Ueno, Saulius Juodkazis, Vygantas Mizeikis, Hideki Fujiwara, Keiji Sasaki, and Hiroaki Misawa, "Lasing with well-defined cavity modes in dye-infiltrated silica inverse opals," Opt. Express 17, 2976-2983 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. S. Letokhov, "Generation of light by a scattering medium with negative resonance absorption," Sov. Phys. JETP 26, 835 - 840 (1968).
  2. D. Wiersma, M. van Albada, and A. Lagendijk, "Coherent backscattering of light from an amplifying medium," Phys. Rev. Lett. 75, 1739 - 1742 (1995). [CrossRef] [PubMed]
  3. C. Vanneste, P. Sebbah, and H. Cao, "Lasing with resonant feedback in weakly scattering random systems," Phys. Rev. Lett.  98, 143902/1-4 (2007). [CrossRef] [PubMed]
  4. P. Anderson, "Absence of diffusion in certain random lattices," Phys. Rev. 109, 1492 - 1505 (1958). [CrossRef]
  5. S. Juodkazis, K. Fujiwara, T. Takahashi, S. Matsuo, and H. Misawa, "Morphology-dependent resonant laser emission of dye-doped ellipsoidal microcavity," J. Appl. Phys. 91, 916-921 (2002). [CrossRef]
  6. V. V. Datsyuk, S. Juodkazis, and H. Misawa, "Properties of a laser based on evanescent-wave amplification," J. Opt. Soc. Am. B 22, 1471 - 1478 (2005). [CrossRef]
  7. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature 368, 436 - 438 (1994). [CrossRef]
  8. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003). [CrossRef]
  9. H. Fujiwara and K. Sasaki, "Microspherical lasing of an erbium-ion-doped glass particle," Jpn. J. Appl. Phys. 41, L46-L48 (2002). [CrossRef]
  10. H. Fujiwara and K. Sasaki, "Lasing of a microsphere in dye solution," Jpn. J. Appl. Phys. 38, 5101 - 5104 (1999). [CrossRef]
  11. S. Frolov, Z. Vardeny, A. Zakhidov, and R. Baughman, "Laser-like emission in opal photonic crystals," Opt. Commun. 162, 241-246 (1999). [CrossRef]
  12. M. N. Shkunov, M. C. DeLong, M. E. Raikh, Z. V. Vardeny, A. Zakhidov, and R. H. Baughman, "Photonic versus random lasing in opal single crystals," Synth. Met. 116, 485 - 491 (2001). [CrossRef]
  13. R. Polson, A. Chipouline, and Z. Vardeny, "Random lasing in π−conjugated films and infiltrated opals," Adv. Mater. 13, 760-764 (2001). [CrossRef]
  14. R. Polson and Z. Vardeny, "Organic random lasers in the weak-scattering regime," Phys. Rev. B 71, 045205 (2005). [CrossRef]
  15. S. Yokoyama and S. Mashiko, "Tuning of laser frequency in random media of dye-doped polymer and glass particle hybride," Jpn. J. Appl. Phys. 42, L970 - L973 (2003). [CrossRef]
  16. M. P. van Albada and A. Lagendijk, "Observation of weak localization of light in a random medium," Phys. Rev. Lett. 55, 2692 - 2695 (1985). [CrossRef] [PubMed]
  17. Y. Nishijima, K. Ueno, S. Juodkazis, V. Mizeikis, H. Misawa, T. Tanimura, and K. Maeda "Inverse silica opal photonic crystals for optical sensing applications," Opt. Express 15, 12979-12988 (2007). [CrossRef]
  18. Y. Nishijima, K. Ueno, S. Juodkazis, V. Mizeikis, H. Misawa,M. Mitsuru, and M. Masashi "Tunable single-mode photonic lasing from zirconia inverse opal photonic crystals," Opt. Express 16, 13676-13684 (2008). [CrossRef]
  19. A. Yariv, Optical Electronics in Modern Communications, 5th ed., (Oxford University Press, New York, 1997).
  20. K. Yoshino, S. Tatsuhara, Y. Kawagishi, M. Ozaki, A. A. Zakhidov, and Z. V. Vardeny, "Amplified spontaneous emission and lasing in conducting polymers and fluorescent dyes in opals as photonic crystals," Appl. Phys. Lett. 74, 2590 - 2592 (1999). [CrossRef]
  21. M. N. Shkunov, M. C. DeLong, M. E. Raikh, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, "Photonic versus random lasing in opal single crystals," Synth. Met. 116, 485 - 491 (2001). [CrossRef]
  22. S. G. Johnson. and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited