OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 4 — Feb. 16, 2009
  • pp: 2997–3006

Propagation of designer surface plasmons in structured conductor surfaces with parabolic gradient index

Bala Krishna Juluri, Sz-Chin S. Lin, Thomas R. Walker, Lasse Jensen, and Tony Jun Huang  »View Author Affiliations


Optics Express, Vol. 17, Issue 4, pp. 2997-3006 (2009)
http://dx.doi.org/10.1364/OE.17.002997


View Full Text Article

Enhanced HTML    Acrobat PDF (543 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, we investigate the propagation of designer surface plasmons in planar perfect electric conductor structures that are subject to a parabolic graded-index distribution. A three-dimensional, fully vectorial finite-difference time-domain method was used to engineer a structure with a parabolic effective group index by modulating the dielectric constant of the structure’s square holes. Using this structure in our simulations, the lateral confinement of propagating designer surface plasmons is demonstrated. Focusing, collimation and waveguiding of designer plasmons in the lateral direction is realized by changing the width of the source beam. Our findings contribute to applications of designer surface plasmons that require energy concentration, diffusion, guiding, and beam aperture modification within planar perfect electric conductors.

© 2009 Optical Society of America

OCIS Codes
(120.1680) Instrumentation, measurement, and metrology : Collimation
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons
(260.5950) Physical optics : Self-focusing

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 5, 2009
Revised Manuscript: February 10, 2009
Manuscript Accepted: February 10, 2009
Published: February 12, 2009

Citation
Bala Krishna Juluri, Sz-chin S. Lin, Thomas R. Walker, Lasse Jensen, and Tony Jun Huang, "Propagation of designer surface plasmons in structured conductor surfaces with parabolic gradient index," Opt. Express 17, 2997-3006 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-4-2997


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998). http://www.nature.com/nature/journal/ v391/n6668/abs/391667a0.html. [CrossRef]
  2. L. Martın-Moreno, F. J. Garcıa-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays," Phys. Rev. Lett. 86, 1114-1117 (2001). http://link.aps.org/abstract/PRL/v86/p1114. [CrossRef] [PubMed]
  3. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2004). http://www.sciencemag.org/cgi/content/abstract/ 305/5685/847. [CrossRef] [PubMed]
  4. F. J. Garcia-Vidal, L. Martın-Moreno, and J. B. Pendry, "Surfaces with holes in them: new plasmonic metamaterials," J. Opt. A: Pure Appl. Opt. 7, S97-S101 (2005). http://www.iop.org/EJ/abstract/ 1464-4258/7/2/013/. [CrossRef]
  5. F. J. G. de Abajo and J. J. Saenz, "Electromagnetic Surface Modes in Structured Perfect-Conductor Surfaces," Phys. Rev. Lett.  95, 233,901-1-4 (2005) http://link.aps.org/abstract/PRL/v95/e233901.
  6. M. Qiu, "Photonic band structures for surface waves on structured metal surfaces," Opt. Express 13, 7583-7588 (2005).http://www.opticsexpress.org/abstract.cfm?uri=oe-13-19-7583. [CrossRef] [PubMed]
  7. A. Hibbins, B. Evans, and J. Sambles, "Experimental Verification of Designer Surface Plasmons," Science 308, 670-672 (2005) http://www.sciencemag.org/cgi/content/abstract/308/5722/670. [CrossRef] [PubMed]
  8. A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, "Waveguide Arrays as Plasmonic Metamaterials: Transmission below Cutoff," Phys. Rev. Lett.  96, 073,904-1-5 (2006). http://link.aps.org/ abstract/PRL/v96/e073904. [CrossRef]
  9. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernndez-Domnguez, L. Martn-Moreno, and F. J. Garca-Vidal, "Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces," Nat. Photonics 2, 175-179 (2008) http://www.nature.com/nphoton/journal/v2/n3/abs/nphoton.2007. 301.html. [CrossRef]
  10. W. Zhu, A. Agrawal, and A. Nahata, "Planar plasmonic terahertz guided-wave devices," Opt. Express 16, 6216-6226 (2008). http://www.opticsexpress.org/abstract.cfm?URI=oe-16-9-6216. [CrossRef] [PubMed]
  11. H. Cao and A. Nahata, "Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures," Opt. Express 12, 1004-1010 (2004) http://www.opticsinfobase.org/ abstract.cfm?URI=oe-12-6-1004. [CrossRef] [PubMed]
  12. F. Miyamaru and M. Hangyo, "Strong enhancement of terahertz transmission for a three-layer heterostructure of metal hole arrays," Phys. Rev. B 72, 035,429-1-5 (2005). http://link.aps.org/abstract/PRB/ v72/e035429. [CrossRef]
  13. J. Gomez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength holes," Phys. Rev. B 68, 201,306-1-4 (2003). http://link.aps.org/abstract/PRB/ v68/e201306. [CrossRef]
  14. A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Grating-coupled surface plasmons at microwave frequencies," J. Appl. Phys. 86, 1791-1795 (1999). http://link.aip.org/link/?JAPIAU/86/1791/1. [CrossRef]
  15. M. Johnston, "Plasmonics: Superfocusing of terahertz waves," Nat. Photonics 1, 14-15 (2007). http://www. nature.com/nphoton/journal/v1/n1/full/nphoton.2006.60.html. [CrossRef]
  16. J. Gomez Rivas, "Terahertz: The art of confinement," Nat. Photonics 2, 137-138 (2008). http://www. nature.com/nphoton/journal/v2/n3/abs/nphoton.2008.12.html. [CrossRef]
  17. D. Wu, N. Fang, C. Sun, X. Zhang, W. Padilla, D. Basov, D. Smith, and S. Schultz, "Terahertz plasmonic high pass filter," Appl. Phys. Lett. 83, 201-203 (2003) http://link.aip.org/link/?APPLAB/83/201/1. [CrossRef]
  18. S. A. Maier, S. R. Andrews, L. Martın-Moreno, and F. J. Garcıa-Vidal, "Terahertz Surface Plasmon-Polariton Propagation and Focusing on Periodically Corrugated Metal Wires," Phys. Rev. Lett.  97, 176,805-1-4 (2006) http://link.aps.org/abstract/PRL/v97/e176805. [CrossRef]
  19. Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C.-Y. Wang, "Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves," Opt. Express 14, 13,021-13,029 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-13021.
  20. L. Shen, X. Chen, Y. Zhong, and K. Agarwal, "Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires," Phys. Rev. B 77, 075,408-1-7 (2008) http://link. aps.org/abstract/PRB/v77/e075408. [CrossRef]
  21. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Bidirectional subwavelength slit splitter for THz surface plasmons," Opt. Express 15, 18,050-18,055 (2007) http://www.opticsexpress.org/abstract.cfm? URI=oe-15-26-18050. [CrossRef]
  22. Z. Ruan and M. Qiu, "Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface," Appl. Phys. Lett.  90, 201,906-1-3 (2007) http://link.aip.org/link/ ?APPLAB/90/201906/1. [CrossRef]
  23. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Ultrawide-Bandwidth Slow-Light System Based on THz Plasmonic Graded Metallic Grating Structures," Phys. Rev. Lett.  100, 256,803-1-3 (2008) http://link.aps.org/ abstract/PRL/v100/e256803. [CrossRef]
  24. S. S. Oh, S.-G. Lee, J.-E. Kim, and H. Y. Park, "Self-collimation phenomena of surface waves in structured perfect electric conductors and metal surfaces," Opt. Express 15, 1205-1210 (2007) http://www. opticsinfobase.org/abstract.cfm?uri=oe-15-3-1205. [CrossRef] [PubMed]
  25. J. Shi, S.-C. Lin, and T. J. Huang, "Wide-band acoustic collimating by phononic crystal composites," Appl. Phy. Lett.  92, 111,901-1-3 (2008).http://link.aip.org/link/?APPLAB/92/111901/1. [CrossRef]
  26. Z. Ruan and M. Qiu, "Negative refraction and sub-wavelength imaging through surface waves on structured perfect conductor surfaces," Opt. Express 14, 6172-6177 (2006). http://www.opticsexpress.org/ abstract.cfm?uri=oe-14-13-6172. [CrossRef] [PubMed]
  27. S. A. Maier and S. R. Andrews, "Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces," Appl. Phys. Lett.  88, 251,120-1-4 (2006). http://link.aip.org/link/ ?APL/88/251120/1. [CrossRef]
  28. C. Gomez-Reino, M. V. Perez, and C. Bao, Gradient-index Optics: Fundamentals and Applications (Springer, 2002).
  29. D. T. Moore, "Gradient-index optics: a review," Appl. Opt. 19, 1035-1038 (1980). http://www. opticsinfobase.org/abstract.cfm?URI=ao-19-7-1035. [CrossRef] [PubMed]
  30. A. O. Pinchuk and G. C. Schatz, "Metamaterials with gradient negative index of refraction," J. Opt. Soc. Am. A 24, A39-A44 (2007) http://www.opticsinfobase.org/abstract.cfm?URI= josaa-24-10-A39. [CrossRef]
  31. H. Kurt and D. S. Citrin, "Graded index photonic crystals," Opt. Express 15, 1240-1253 (2007). http://www. opticsexpress.org/abstract.cfm?uri=oe-15-3-1240. [CrossRef] [PubMed]
  32. P. Stellman, K. Tian, and G. Barbastathis, "Design of Gradient Index (GRIN) Lens using Photonic Non-Crystals," in Conference on Lasers and Electro-Optics, p. 1 (2007). http://ieeexplore.ieee.org/search/ wrapper.jsp?arnumber=4453288.
  33. F. S. Roux and I. De Leon, "Planar photonic crystal gradient index lens, simulated with a finite difference time domain method," Phys. Rev. B 74, 113,103-1-4 (2006) http://link.aps.org/abstract/PRB/v74/ e113103. [CrossRef]
  34. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, 2000).
  35. V. A. Mandelshtam and H. S. Taylor, "Harmonic inversion of time signals and its applications," J. Chem. Phys. 107, 6756-6769 (1997). http://link.aip.org/link/?JCPSA6/107/6756/1. [CrossRef]
  36. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, "Improving accuracy by subpixel smoothing in the finite-difference time domain," Opt. Lett. 31, 2972-2974 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-20-2972. [CrossRef] [PubMed]
  37. J. Saxler, J . Gomez Rivas, C . Janke, H . Pellemans, P . Bolıvar, and H . Kurz, "Time-domain measurements of surface plasmon polaritons in the terahertz frequency range," Phys. Rev. B 69, 155,427-1-4 (2004). http: //link.aps.org/abstract/PRB/v69/e155427. [CrossRef]
  38. W. Nomura, M. Ohtsu, and T. Yatsui, "Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion," Appl. Phys. Lett.  86, 181,108-1-3 (2005) http://link.aip.org/link/ ?APL/86/181108/1. [CrossRef]
  39. Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Plasmonic surface-wave splitter," Appl. Phys. Lett.  90, 161,130-1-3 (2007) http://link.aip.org/link/?APL/90/161130/1. [CrossRef]
  40. F. Lopez-Tejeira, S. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, E. Devaux, T. Ebbesen, J. Krenn, I. Radko, S. Bozhevolnyi, M. Gonzalez,  et al., "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys.  3, 324-328 (2007) http://www.nature.com/nphys/journal/v3/n5/abs/nphys584.html. [CrossRef]
  41. P. Berini, "Plasmon polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503 (2000). http://link.aps.org/doi/10.1103/PhysRevB. 61.10484. [CrossRef]
  42. B. K Juluri, Y. B Zheng, D. Ahmed, L. Jensen, and T. J. Huang, "Effects of geometry and composition on chargeinduced plasmonic shifts in gold nanoparticles," J. Phys. Chem. C 112, 7309-7312 (2008). http://dx.doi. org/10.1021/jp077346h. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited