OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 4 — Feb. 16, 2009
  • pp: 3007–3015

Observation and analysis of coherent optical waves emitted from large-Fresnel number degenerate cavities

T. H. Lu, Y. C. Lin, Y. F. Chen, and K. F. Huang  »View Author Affiliations

Optics Express, Vol. 17, Issue 4, pp. 3007-3015 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (534 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate that the coherent optical waves emitted from large-Fresnel-number degenerate cavities persistently display a sort of salient intensity variations. We use the representation of the coherent states to explore the origin of the salient intensity variations and find that these coherent laser waves arise from a quadrature superposition of two degenerate coherent states. With the analytical representation of the superposed coherent states, we verify that these coherent laser waves possess a large angular momentum per photon.

© 2009 Optical Society of America

OCIS Codes
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(070.1675) Fourier optics and signal processing : Coherent states (in wave optics)

ToC Category:
Fourier Optics and Signal Processing

Original Manuscript: January 16, 2009
Revised Manuscript: February 10, 2009
Manuscript Accepted: February 11, 2009
Published: February 12, 2009

T. H. Lu, Y. C. Lin, Y. F. Chen, and K. F. Huang, "Observation and analysis of coherent optical waves emitted from large-Fresnel number degenerate cavities," Opt. Express 17, 3007-3015 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Staliūnas, G. Šlekys, and C. O. Weiss, "Nonlinear pattern formation in active optical systems: shocks, domains of tilted waves, and cross-roll patterns," Phys. Rev. Lett. 79, 2658-2661 (1997). [CrossRef]
  2. F. T. Arecchi, G. Giacomelli, P. L. Ramazza, and S. Residori, "Vortices and defect statistics in two-dimensional optical chaos," Phys. Rev. Lett. 67, 3749-3752 (1991). [CrossRef] [PubMed]
  3. A. M. Zhabotinshii, "Periodic liquid-phase oxidation reactions." Dokl Akad Nauk SSSR,  157, 392-395 (1964).
  4. M. Howard and A. D. Rutenberg, " Pattern Formation inside Bacteria: Fluctuations due to the Low Copy Number of Proteins," Phys. Rev. Lett. 90, 128102 (2003). [CrossRef] [PubMed]
  5. S. Rüdiger, D. G. Míguez, A. P. Muñuzuri, F. Sagués, and J. Casademunt, "Dynamics of Turing patterns under spatiotemporal forcing," Phys. Rev. Lett. 90, 128301 (2003). [CrossRef] [PubMed]
  6. L. Yang and I. R. Epstein, "Oscillatory Turing Patterns in Reaction-Diffusion Systems with Two Coupled Layers," Phys. Rev. Lett. 90, 178303 (2003). [CrossRef] [PubMed]
  7. V. K. Vanag and I. R. Epstein, "Translational and nontranslational motion of perturbed Turing patterns," Phys. Rev. E 67, 066219 (2003). [CrossRef]
  8. S. Wasserman, J. Dungan, and N. Cozzarelli, "Discovery of a predicted DNA knot substantiates a model for site-specific recombination," Science 229, 171 (1985). [CrossRef] [PubMed]
  9. E. Ercolini, F. Valle, J. Adamcik, G. Witz, R. Metzler, P. De Los Rios, J. Roca, and G. Dietler, "Fractal dimension and localization of DNA knots," Phys. Rev. Lett. 98, 058102 (2007). [CrossRef] [PubMed]
  10. M. Brambilla, F. Battipede, L. A. Lugiato, V. Penna, F. Prati, C. Tamm, and C. O. Weiss, "Transverse laser patterns. I. Phase singularity crystals," Phys. Rev. A 43, 5090-5113 (1991). [CrossRef] [PubMed]
  11. D. Dangoisse, D. Hennequin, C. Lepers, E. Louvergneaux, and P. Glorieux, "Two-dimensional optical lattices in a CO2 laser," Phys. Rev. A 46, 5955-5958 (1992). [CrossRef] [PubMed]
  12. E. Cabrera, O. G. Calderón, S. Melle, and J. M. Guerra, "Development of spatial turbulence from boundary-controlled patterns in class-B lasers," Phys. Rev. A 73, 053820 (2006). [CrossRef]
  13. T. H. Lu, Y. F. Chen, and K. F. Huang, "Generation of polarization-entangled optical coherent waves and manifestation of vector singularity patterns," Phys. Rev. E 75, 026614 (2007). [CrossRef]
  14. J. F. Nye and M. V. Berry, "Dislocations in wave trains," Proc. R. Soc. A 336, 165-190 (1974). [CrossRef]
  15. M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, "Topological charge and angular momentum of light beams carrying optical vortices," Phys. Rev. A 56, 4064-4075 (1997). [CrossRef]
  16. A. N. Alexeyev, T.A. Fadeyeva, A.V. Volyar, and M. S. Soskin, "Optical vortices and the flow of their angular momentum in a multimode fiber," Semicond. Phys. Quantum Electron. Optoelectron. 1, 82-89 (1998).
  17. M. V. Berry, M. R. Dennis and M. S. Soskin, "The plurality of optical singularities," J. Opt. A: Pure Appl. Opt. 6, S155-156 (2004). [CrossRef]
  18. R. A. Beth, "Mechanical detection and measurement of the angular momentum of light," Phys. Rev. 50, 115-125 (1936). [CrossRef]
  19. R. Zambrini and S. M. Barnett, "Quasi-intrinsic angular momentum and the measurement of its spectrum," Phys. Rev. Lett. 96, 113901 (2006). [CrossRef] [PubMed]
  20. A. Ya. Bershaev and M.S. Soskin, "Transverse energy flows in vectorial fields of paraxial beams with singularities," Opt. Commun. 271, 332-348 (2007). [CrossRef]
  21. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992). [CrossRef] [PubMed]
  22. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, "Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam," Phys. Rev. Lett. 88, 053601 (2002). [CrossRef] [PubMed]
  23. P. Galajda and P. Ormosa, "Complex micromachines produced and driven by light," Appl. Phys. Lett. 78, 249 (2001). [CrossRef]
  24. N. B. Simpson, K. Dholokia, L. Allen and M. J. Padgett, "Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner," Opt. Lett. 22, 52-54 (1997). [CrossRef] [PubMed]
  25. J. E. Curtis and D. G. Grier, "Structure of optical vortices," Phys. Rev. Lett. 90, 133901 (2003). [CrossRef] [PubMed]
  26. M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, "Optical angular-momentum transfer to trapped absorbing particles," Phys. Rev. A 54, 1593-1596 (1996). [CrossRef] [PubMed]
  27. Y. F. Chen, T. H. Lu, K. W. Su, and K. F. Huang, "Devil's staircase in three-dimensional coherent waves localized on Lissajous parametric surfaces," Phys. Rev. Lett. 96, 213902 (2006). [CrossRef] [PubMed]
  28. J. Dingjan, M. P. van Exter and J. P. Woerdman, "Geometric modes in a single-frequency Nd:YVO4 laser," Opt. Commun. 188, 345-351 (2001). [CrossRef]
  29. Y. F. Chen and K. F. Huang, "Vortex structure of quantum eigenstates and classical periodic orbits in two-dimensional harmonic oscillators," J. Phys. A 36, 7751-7760 (2003). [CrossRef]
  30. A. J. Makowski, "Comment on 'Vortex structure of quantum eigenstates and classical periodic orbits in two-dimensional harmonic oscillators'," J. Phys. A 38, 2299-2302 (2005). [CrossRef]
  31. Y. F. Chen, T. H. Lu, K. W. Su, and K. F. Huang, "Quantum signatures of nonlinear resonances in mesoscopic systems: Efficient extension of localized wave functions," Phys. Rev. E 72, 056210 (2005). [CrossRef]
  32. K. J. Górska, A. J. Makowski, and S. T. Dembiński, "Correspondence between some wave patterns and Lissajous figures," J. Phys. A 39, 13285-13294 (2006). [CrossRef]
  33. T. H. Lu, Y. F. Chen, and K. F. Huang, "Spatial morphology of macroscopic superposition of three-dimensional coherent laser waves in degenerate cavities," Phys. Rev. A 77, 013828 (2008). [CrossRef]
  34. R. Zambrini and S. M. Barnett, "Angular momentum of multimode and polarization patterns," Opt. Express 15, 15214-15227 (2007). [CrossRef] [PubMed]
  35. J. Leach, M. R. Dennis, J. Courtial and M. J. Padgett, "Vortex knots in light," New J. Phys. 7, 55 (2005). [CrossRef]
  36. A. T. Winfree, "Persistent tangles of vortex rings in excitable media," Physca D 84, 126-147 (1995). [CrossRef]
  37. A. Malevanets and R. Kapral, "Links, Knots, and Knotted Labyrinths in Bistable Systems," Phys. Rev. Lett. 77, 767-770 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited