OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 5 — Mar. 2, 2009
  • pp: 3025–3035

A matrix-free algorithm for multiple wavelength fluorescence tomography

Athanasios D Zacharopoulos, Pontus Svenmarker, Johan Axelsson, Martin Schweiger, Simon R Arridge, and Stefan Andersson-Engels  »View Author Affiliations


Optics Express, Vol. 17, Issue 5, pp. 3025-3035 (2009)
http://dx.doi.org/10.1364/OE.17.003025


View Full Text Article

Enhanced HTML    Acrobat PDF (209 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In the recent years, there has been an increase in applications of non-contact diffusion optical tomography. Especially when the objective is the recovery of fluorescence targets. The non-contact acquisition systems with the use of a CCD-camera produce much denser sampled boundary data sets than fibre-based systems. When model-based reconstruction methods are used, that rely on the inversion of a derivative operator, the large number of measurements poses a challenge since the explicit formulation and storage of the Jacobian matrix could be in general not feasible. This problem is aggravated further in applications, where measurements at multiple wavelengths are used. We present a matrix-free model-based reconstruction method, that addresses the problems of large data sets and reduces the computational cost and memory requirements for the reconstruction. The idea behind the matrix-free method is that information about the Jacobian matrix could be available through matrix times vector products so that the creation and storage of big matrices can be avoided. We tested the method for multiple wavelength fluorescence tomography with simulated and experimental data from phantom experiments, and we found substantial benefits in computational times and memory requirements.

© 2009 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

History
Original Manuscript: November 18, 2008
Revised Manuscript: February 3, 2009
Manuscript Accepted: February 3, 2009
Published: February 13, 2009

Citation
A. Husakov and J. Herrmann, "Chirped multilayer hollow waveguides with broadband transmission," Opt. Express 17, 3025-3035 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3025


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. A. J. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43, 1783-1809 (1964). [CrossRef] [PubMed]
  2. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999). [CrossRef] [PubMed]
  3. P. St. J. Russel, "Photonic crystal fibers," Science 299, 358-362 (2000). [CrossRef] [PubMed]
  4. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulous, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO" laser transmission," Nature 420, 650-653 (2002). [CrossRef]
  5. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulous, and Y. Fink, "Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers," Opt. Express 9, 748-780 (2001). [CrossRef] [PubMed]
  6. G. Vienne, Y. Xu, C. Jakobsen, H.-J¨oeyer, J. B. Jensen, T. Sørensen, T. P. Hansen, Y. Huang, M. Terrel, R. K. Lee, N. A. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, and A. Yariv, "Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports," Opt. Express 12, 3500i-3508 (2004). [CrossRef] [PubMed]
  7. P. Yeh, A. Yariv, and E. Marom, "Theory of bragg fiber," J. Opt. Soc. Am. 68, 1196-1201 (1978). [CrossRef] [PubMed]
  8. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, "Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs," Science 318, 1118-1121 (2007). [CrossRef] [PubMed]
  9. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russel, "Stimulated Raman Scattering in Hydrogen-Filled Hollow Core Photonic Crystal Fiber," Science 298, 399-402 (2002). [CrossRef]
  10. D. G. Ouzounov, F. R. Ahmad, D. Mueller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003). [CrossRef] [PubMed]
  11. F. Gerome, K. Cook, A. K. George, W. J. Wadsworth, and J. C. Knight, "Delivery of sub-100fs pulses through 8m of hollow-core fiber using soliton compression," Opt. Express 15, 7126-7131 (2007). [CrossRef]
  12. D. Ouzounov, C. Hensley, A. Gaeta, N. Venkateraman, M. Gallaher, and K. Koch, "Soliton pulse compression in photonic band-gap fibers," Opt. Express 13, 6153-6159 (2005). [CrossRef]
  13. M. Nisoli, S. de Silvestri, and O. Svelto, "Generation of high energy 10 fs pulses by a new pulse compression technique," Appl. Phys. Lett. 68, 2793-2797 (1996).
  14. A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultue, M. Fiess, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, "Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broad soft-x-ray harmonic continua," New J. Phys. 9, 242 (2007). [CrossRef] [PubMed]
  15. A. Rundquist, C. G. DurfeeIII, Z. Chang, C. Herne, S. Bauckus, M. M. Murnane, and H. C. Kapteyn, "Phasematched generation of coherent soft x-rays," Science 280, 1412-1415 (1998). [CrossRef] [PubMed]
  16. M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, Ch. Speilmann, G. A. Reider, P. B. Corkum, and F. Krausz, "X-Ray pulses approaching the attosecond frontier," Science 291, 1923-1927 (2001). [CrossRef] [PubMed]
  17. C. G. DurfeeIII, S. Backus, H. C. Kapteyn, and M. M. Murnane, "Intense 8-fs pulse generation in the deep ultraviolet," Opt. Lett. 24, 697-699 (1999). [CrossRef] [PubMed]
  18. P. Tzankov, O. Steinkeller, J. Zheng, M. Mero,W. Freyer, A. Husakou, I. Babushkin, J. Herrmann, and F. Noack, "High-power fifth-harmonic generation of femtosecond pulses in the vacuum ultraviolet using a Ti:sapphire laser," Opt. Express 15, 6389-6395 (2007).
  19. A. Husakou and J. Herrmann, "Dispersion control in ultrabroadband dielectric-coated metallic hollow waveguides," Opt. Express 16, 3834-3843 (2008).
  20. R. Scip¨ocs, K. Ferencz, C. Spielmann, and F. Krausz, "Chirped multilayer coatings for broadband dispersion control in femtosecond lasers," Opt. Lett. 19, 201-203 (1994).
  21. D. Mori and T. Baba, "Dispersion-controlled optical group-delay device by chirped photonic crystal waveguides," Appl. Phys. Lett. 85, 1101-1103 (2004).
  22. Q3. J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, "A chirped photonic-crystal fibre," Nature Photon. 2, 1-5 (2008).
  23. L. Davis, Handbook of genetic algorithms (Van Nostrand Reinhold, New York, 1991).
  24. R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature 406, 164-166 (2000).
  25. A. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers," Phys. Rev. Lett. 87, 203901 (2001).
  26. A. Husakou and J. Herrmann, "Hundred milliards times brighter than the Sun: ultrahigh-power supercontinuum generation from dielectric-coated metallic hollow waveguides," Phys. Rev. Lett.submitted.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited