OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 5 — Mar. 2, 2009
  • pp: 3078–3083

High efficient optical focusing of a zone plate composed of metal/dielectric multilayer

Hyun Chul Kim, Hyungduk Ko, and Mosong Cheng  »View Author Affiliations

Optics Express, Vol. 17, Issue 5, pp. 3078-3083 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (193 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We numerically investigate the optical field enhancement by a metal/dielectric multilayered zone plate. The optical field enhancement at the focal point of a zone plate originates not only from surface plasmon polaritons (SPPs)-assisted diffraction process along the propagation direction of incident light, but also from multiple scattering and coupling of surface plasmons (SPs) along the metal/dielectric multilayer films. By comparing multilayered zone plates to a conventional monolayered zone plate, we present the effects associated with the number of building blocks and different dielectric materials in the building block on the efficiency of the transmission.

© 2009 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves
(050.1965) Diffraction and gratings : Diffractive lenses
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: December 9, 2008
Revised Manuscript: January 31, 2009
Manuscript Accepted: February 4, 2009
Published: February 17, 2009

Hyun Chul Kim, Hyungduk Ko, and Mosong Cheng, "High efficient optical focusing of a zone plate composed of metal/dielectric multilayer," Opt. Express 17, 3078-3083 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Fu, W. Zhou, and L. E. N. Lim, "Near-field behavior of zone-plate-like plasmonic nanostructures," J. Opt. Soc. Am. A 25, 238-249 (2008). [CrossRef]
  2. H. C. Kim, H. Ko, and M. Cheng, "Optical focusing of plasmonic Fresnel zone plate-based metallic structure covered with a dielectric layer," J. Vac. Sci. Technol. B 26, 2197-2203 (2008). [CrossRef]
  3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998). [CrossRef]
  4. E. Ozbay, "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions," Science 311, 189-193 (2006). [CrossRef] [PubMed]
  5. Z. H. Tang, R. W. Peng, Z. Wang, X. Wu, Y. J. Bao, Q. J. Wang, Z. J. Zhang, W. H. Sun, and M. Wang, "Coupling of surface plasmons in nanostructured metal/dielectric multilayers with subwavelength hole arrays," Phys. Rev. B 76, 195405-195408 (2007). [CrossRef]
  6. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).
  7. J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, "Resonant and non-resonant generation and focusing of surface plasmons with circular gratings," Opt. Express 14, 5664-5670 (2006). [CrossRef] [PubMed]
  8. Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, "Plasmonic microzone plate: Superfocusing at visible regime," Appl. Phys. Lett. 91, 061124-061123 (2007). [CrossRef]
  9. D.-Z. Lin, C.-H. Chen, C.-K. Chang, T.-D. Cheng, C.-S. Yeh, and C.-K. Lee, "Subwavelength nondiffraction beam generated by a plasmonic lens," Appl. Phys. Lett. 92, 233106-233103 (2008). [CrossRef]
  10. S. Seo, H. C. Kim, H. Ko, and M. Cheng, "Subwavelength proximity nanolithography using a plasmonic lens," J. Vac. Sci. Technol. B 25, 2271-2276 (2007). [CrossRef]
  11. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing Surface Plasmons with a Plasmonic Lens," Nano Lett. 5, 1726-1729 (2005). [CrossRef] [PubMed]
  12. C. Liu, N. Chen, and C. Sheppard, "Nanoillumination based on self-focus and field enhancement inside a subwavelength metallic structure," Appl. Phys. Lett. 90, 011501-011503 (2007). [CrossRef]
  13. P. K. Tien, "Integrated optics and new wave phenomena in optical waveguides," Rev. Mod. Phys. 49, 361 (1977). [CrossRef]
  14. R. Gordon and A. Brolo, "Increased cut-off wavelength for a subwavelength hole in a real metal," Opt. Express 13, 1933-1938 (2005). [CrossRef] [PubMed]
  15. H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, "Beam manipulating by metallic nano-slits with variant widths," Opt. Express 13, 6815-6820 (2005). [CrossRef] [PubMed]
  16. B. Ung and Y. Sheng, "Mechanism of coupling and interference in nano-slit," in Holography and Diffractive Optics III, (SPIE, 2007), 68320E-68328.
  17. J. Park, H. Kim, I.-M. Lee, S. Kim, J. Jung, and B. Lee, "Resonant tunneling of surface plasmon polariton in the plasmonic nano-cavity," Opt. Express 16, 16903-16915 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited