OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 5 — Mar. 2, 2009
  • pp: 3130–3140

Development of mid-infrared surface plasmon resonance-based sensors with highly-doped silicon for biomedical and chemical applications

Yu-Bin Chen  »View Author Affiliations

Optics Express, Vol. 17, Issue 5, pp. 3130-3140 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (531 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Biomedical and chemical sensors utilizing surface plasmon resonance (SPR) in the mid-infrared range were developed with the aid of highly doped silicon owing to its tailored optical constants. SPR may be excited by light incident on a periodic doping profile embedded in an intrinsic silicon film without constraints on the flow of chemical solutions or activities of biomedical samples. General guidance for tuning SPR wavelengths based on dispersion curves to catch different target materials in free space or water was also provided. The feasibility of sensors was demonstrated with a sharp spectral–directional reflectance dip, which shifted with optical constants variation. The effects of doping concentration, doping profile, and angle of incidence on sensor performance were numerically studied with a rigorous coupled-wave analysis algorithm. Developed sensors could work well for a real target and show superiority in sensitivity over existing sensors.

© 2009 Optical Society of America

OCIS Codes
(040.6040) Detectors : Silicon
(050.1940) Diffraction and gratings : Diffraction
(130.3060) Integrated optics : Infrared
(130.6010) Integrated optics : Sensors
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:

Original Manuscript: October 29, 2008
Revised Manuscript: December 15, 2008
Manuscript Accepted: December 15, 2008
Published: February 17, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics

Yu-Bin Chen, "Development of mid-infrared surface plasmon resonance-based sensors with highly-doped silicon for biomedical and chemical applications," Opt. Express 17, 3130-3140 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sen.Actuator B-Chem. 54, 3-15 (1999). [CrossRef]
  2. K. Kim, S. J. Yoon, and D. Kim, "Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study," Opt. Express 14, 12419-12431 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-25-12419. [CrossRef] [PubMed]
  3. K. Park, B. J. Lee, C. Fu, and Z. M. Zhang, "Study of the surface and bulk polaritons with a negative index metamaterial," J. Opt. Soc. Am. B 22, 1016-1023 (2005). [CrossRef]
  4. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  5. J. Homola, Surface Plasmon Resonance Based Sensors (Springer-Verlag, 2006). [CrossRef]
  6. S. J. Chen, F. C. Chien, G. Y. Lin, and K. C. Lee, "Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles," Opt. Lett. 29, 1390-1392 (2004). [CrossRef] [PubMed]
  7. J. N. Yih, Y. M. Chu, Y. C. Mao, W. H. Wang, F. C. Chien, C. Y. Lin, K. L. Lee, P. K. Wei, and S. J. Chen, "Optical waveguide biosensors constructed with subwavelength gratings," Appl. Opt. 45, 1938-1942 (2006). [CrossRef] [PubMed]
  8. S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Properties and sensing characteristics of surface-plasmon resonance in infrared light," J. Opt. Soc. Am. A 20, 1644-1650 (2003). [CrossRef]
  9. A. Ikehata, X. L. Li, T. Itoh, Y. Ozaki, and J. H. Jiang, "High sensitive detection of near-infrared absorption by surface plasmon resonance," Appl. Phys. Lett. 83, 2232-2234 (2003). [CrossRef]
  10. B. Schrader, Infrared and Raman Spectroscopy: Methods and Applications (Weinheim, 1994).
  11. G. G. Huang and J. Yang, "Development of infrared optical sensor for selective detection of tyrosine in biological fluids," Biosens. Bioelectron. 21, 408-418 (2005). [CrossRef] [PubMed]
  12. F. Crespi, M. Donini, A. Bandera, F. Congestri, F. Formenti, V. Sonntag, C. Heidbreder, and L. Rovati, "Near-infrared oxymeter biosensor prototype for non-invasive in vivo analysis of rat brain oxygenation: effects of drugs of abuse," J. Opt. A 8, S528-S534 (2006). [CrossRef]
  13. D. Enders, T. Nagao, A. Pucci, and T. Nakayama, "Reversible adsorption of Au nanoparticles on SiO2/Si: An in situ ATR-IR study," Surf. Sci. 600, L71-L75 (2006). [CrossRef]
  14. M. Laroche, F. Marquier, R. Carminati, and J. J. Greffet, "Tailoring silicon radiative properties," Opt. Commun. 250, 316-320 (2005). [CrossRef]
  15. S. Basu, B. J. Lee, and Z. M. Zhang, "Infrared radiative properties of heavily doped silicon at room temperature," J. Heat Transf.-Trans. ASME (to be published).
  16. F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, "Engineering infrared emission properties of silicon in the near field and the far field," Opt. Commun. 237, 379-388 (2004). [CrossRef]
  17. F. Marquier, M. Laroche, R. Carminati, and J. J. Greffet, "Anisotropic polarized emission of a doped silicon lamellar grating," J. Heat Transf.-Trans. ASME 129, 11-16 (2007). [CrossRef]
  18. Y.-B. Chen and Z. M. Zhang, "Heavily doped silicon complex gratings as wavelength-selective absorbing surfaces," J. Phys. D 41, 095406 (2008). [CrossRef]
  19. B. J. Lee, Y.-B. Chen, and Z. M. Zhang, "Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared," J. Comput. Theor. Nanosci. 5, 201-213 (2008).
  20. Y.-B. Chen and Z. M. Zhang, "Design of tungsten complex gratings for thermophotovoltaic radiators," Opt. Commun. 269, 411-417 (2007). [CrossRef]
  21. F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, and Y. Chen, "Coherent spontaneous emission of light by thermal sources," Phys. Rev. B 69, 155412 (2004). [CrossRef]
  22. M. R. Querry, D. M. Wieliczka, and D. J. Segelstein, "Water," in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, 1991).
  23. D. F. Edwards, "Silicon," in Handbook of Optical Constants of Solids III, E. D. Palik, ed. (Academic, 1998).
  24. Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).
  25. K. Fu, Y.-B. Chen, P.-F. Hsu, Z. M. Zhang, and P. J. Timans, "Device scaling effect on the spectral-directional absorptance of wafer's front side," Int. J. Heat Mass Transf. 51, 4911-4925 (2008). [CrossRef]
  26. Y.-B. Chen, B. J. Lee, and Z. M. Zhang, "Infrared radiative properties of submicron metallic slits," J. Heat Transf.-Trans. ASME 130, 082404 (2008). [CrossRef]
  27. G. J. Boer, I. N. Sokolik, and S. T. Martin, "Infrared optical constants of aqueous sulfate-nitrate-ammonium multi-component tropospheric aerosols from attenuated total reflectance measurements—Part I: Results and analysis of spectral absorbing features," J. Quant. Spectrosc. Radiat. Transf. 108, 17-38 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited