OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 5 — Mar. 2, 2009
  • pp: 3141–3147

Complete spatial and temporal locking in phase-mismatched second-harmonic generation

Eugenio Fazio, Federico Pettazzi, Marco Centini, Mathieu Chauvet, Alessandro Belardini, Massimo Alonzo, Concita Sibilia, Mario Bertolotti, and Michael Scalora  »View Author Affiliations


Optics Express, Vol. 17, Issue 5, pp. 3141-3147 (2009)
http://dx.doi.org/10.1364/OE.17.003141


View Full Text Article

Enhanced HTML    Acrobat PDF (520 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally demonstrate simultaneous phase and group velocity locking of fundamental and generated second harmonic pulses in Lithium Niobate, under conditions of material phase mismatch. In phase-mismatched, pulsed second harmonic generation in addition to a reflected signal two forward-propagating pulses are also generated at the interface between a linear and a second order nonlinear material: the first pulse results from the solution of the homogeneous wave equation, and propagates at the group velocity expected from material dispersion; the second pulse is the solution of the inhomogeneous wave equation, is phase-locked and trapped by the pump pulse, and follows the pump trajectory. At normal incidence, the normal and phase locked pulses simply trail each other. At oblique incidence, the consequences can be quite dramatic. The homogeneous pulse refracts as predicted by material dispersion and Snell’s law, yielding at least two spatially separate second harmonic spots at the medium’s exit. We thus report the first experimental results showing that, at oblique incidence, fundamental and phase-locked second harmonic pulses travel with the same group velocity and follow the same trajectory. This is direct evidence that, at least up to first order, the effective dispersion of the phase-locked pulse is similar to the dispersion of the pump pulse.

© 2009 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: November 3, 2008
Revised Manuscript: December 11, 2008
Manuscript Accepted: January 20, 2009
Published: February 17, 2009

Citation
Eugenio Fazio, Federico Pettazzi, Marco Centini, Mathieu Chauvet, Alessandro Belardini, Massimo Alonzo, Concita Sibilia, Mario Bertolotti, and Micheal Scalora, "Complete spatial and temporal locking in phase-mismatched second-harmonic generation," Opt. Express 17, 3141-3147 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3141


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between Light Waves in a Nonlinear Dielectric," Phys. Rev. 127, 1918 (1962). [CrossRef]
  2. N. Bloembergen and P. S. Pershan, "Light Waves at the Boundary of Nonlinear Media," Phys. Rev. 128, 606 (1962). [CrossRef]
  3. P. D. Maker, R. W. Terhune, N. Nisenoff, and C. M. Savage, "Effects of Dispersion and Focusing on the Production of Optical Harmonics," Phys. Rev. Lett. 8, 21 (1962). [CrossRef]
  4. N. Bloembergen, H. J. Simon, and C. H. Lee, "Total Reflection Phenomena in Second-Harmonic Generation of Light," Phys. Rev. 181, 1261 (1969). [CrossRef]
  5. A. Feisst and P. Koidl, "Current induced periodic ferroelectric domain structures in LiNbO3 applied for efficient nonlinear optical frequency mixing," Appl. Phys. Lett. 47, 1125 (1985). [CrossRef]
  6. U. Osterberg and W. Margulis, "Dye laser pumped by Nd: YAG laser pulses frequency doubled in a glass optical fiber," Opt. Lett. 11, 516 (1986). [CrossRef] [PubMed]
  7. G. A. Magel, M. M. Fejer, and R. L. Byer, "Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3," Appl. Phys. Lett. 56, 108 (1990). [CrossRef]
  8. S. K. Kurtz and T. T. Perry, "A Powder Technique for the Evaluation of Nonlinear Optical Materials," J. Appl. Phys. 39, 3798 (1968). [CrossRef]
  9. J. P. van der Ziel, "Phase−matched harmonic generation in a laminar structure with wave propagation in the plane of the layers," Appl. Phys. Lett. 26, 60 (1976). [CrossRef]
  10. K. Sakoda and K. Othaka, "Sum-frequency generation in a two-dimensional photonic lattice," Phys. Rev. B 54, 5742 (1996). [CrossRef]
  11. R. J. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, "Self-focusing and self-defocusing by cascaded second-order effects in KTP," Opt. Lett. 17, 28 (1992). [CrossRef] [PubMed]
  12. N. C. Kothari and X. Carlotti, "Transient second-harmonic generation: influence of effective group-velocity dispersion," J. Opt. Soc. Am. B 5, 756 (1988). [CrossRef]
  13. R. Maleck Rassoul, A. Ivanov, E. Freysz, A. Ducasse, and F. Hache, "Second-harmonic generation under phase-velocity and group-velocity mismatch:influence of cascading self-phase and cross-phase modulation," Opt. Lett. 22, 268 (1997). [CrossRef] [PubMed]
  14. S. Cussat-Blanc, R. Maleck-Rassoul, A. Ivanov, E. Freysz, and A. Ducasse, "Influence of cascading phenomena on a type I second-harmonic wave generated by an intense femtosecond pulse: application to the measurement of the effective second-order coefficient," Opt. Lett. 23, 1585 (1998). [CrossRef]
  15. E. Fazio, M. Zitelli, S. Dominici, C. Sibilia, G. D'Aguanno, and M. Bertolotti, "Phase-driven pulse breaking during perfectly-matched second harmonic generation," Opt. Commun. 148, 427 (1998). [CrossRef]
  16. D. Noordam, H. J. Bakker, M. P. de Boer, H. B. van Linden van den Heuvell, "Second-harmonic generation of femtosecond pulses: observation of phase-mismatch effects," Opt. Lett. 15, 1464 (1990) [CrossRef] [PubMed]
  17. M. Mlejnek, E. M. Wright, J. V. Moloney, and N. Bloembergen, "Second Harmonic Generation of Femtosecond Pulses at the Boundary of a Nonlinear Dielectric", Phys. Rev. Lett. 83, 2934 (1999). [CrossRef]
  18. W. Su, L. Qian, H. Luo, X. Fu, H. Zhu, T. Wang, K. Beckwitt, Y. Chen, and F. Wise, "Induced group-velocity dispersion in phase-mismatched second-harmonic generation", J. Opt. Soc. Am. B 23, 51 (2006). [CrossRef]
  19. V. Roppo, M. Centini, C. Sibilia, M. Bertolotti, D. de Ceglia, M. Scalora, N. Akozbek, M. J. Bloemer, J. W. Haus, O. G. Kosareva, V. P. Kandidov, "Role of phase matching in pulsed second-harmonic generation: Walk-off and phase-locked twin pulses in negative-index media", Phys. Rev. A 76, 033829 (2007) [CrossRef]
  20. M. Centini, V. Roppo, E. Fazio, F. Pettazzi, C. Sibilia, J. W. Haus, J. V. Foreman, N. Akozbek, M. J. Bloemer, M. Scalora, "Inhibition of Linear Absorption in Opaque Materials Using Phase-Locked Harmonic Generation", Phys. Rev. Lett. 101, 113905 (2008) [CrossRef] [PubMed]
  21. P. D. Marker, R. W. Terhune, M. Nisenoff and C. M. Savage, "Effects of Dispersion and Focusing on the Production of Optical Harmonics", Phys. Rev. Lett. 8, 21 (1962). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited