OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 5 — Mar. 2, 2009
  • pp: 3148–3156

Confining light flow in weakly coupled waveguide arrays by structuring the coupling constant: towards discrete diffractive optics

Nadia Belabas, Sophie Bouchoule, Isabelle Sagnes, Juan Ariel Levenson, Christophe Minot, and Jean-Marie Moison  »View Author Affiliations


Optics Express, Vol. 17, Issue 5, pp. 3148-3156 (2009)
http://dx.doi.org/10.1364/OE.17.003148


View Full Text Article

Enhanced HTML    Acrobat PDF (367 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Structuring the coupling constant in coupled waveguide arrays opens up a new route towards molding and controlling the flow of light in discrete structures. We show coupled mode theory is a reliable yet very simple and practical tool to design and explore new structures of patterned coupling constant. We validate our simulation and technological choices by successful fabrication of appropriate III-V semiconductor patterned waveguide arrays. We demonstrate confinement of light in designated areas of one-dimensional semi-conductor waveguide arrays.

© 2009 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(230.3990) Optical devices : Micro-optical devices
(350.3950) Other areas of optics : Micro-optics
(080.1238) Geometric optics : Array waveguide devices

ToC Category:
Integrated Optics

History
Original Manuscript: November 4, 2008
Revised Manuscript: December 30, 2008
Manuscript Accepted: January 4, 2009
Published: February 17, 2009

Citation
Nadia Belabas, Sophie Bouchoule, Isabelle Sagnes, Juan Ariel Levenson, Christophe Minot, and Jean-Marie Moison, "Confining light flow in weakly coupled waveguide arrays by structuring the coupling constant: towards discrete diffractive optics," Opt. Express 17, 3148-3156 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3148


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. N. Christodoulides, F. Lederer, and Y. Silberberg, "Discretizing light behavior in linear and nonlinear waveguide lattices," Nature 424, 817-823 (2003). [CrossRef] [PubMed]
  2. J. Fleischer, G. Bartal, O. Cohen, T. Schwartz, O. Manela, B. Freedman, M. Segev, H. Buljan, and N. Efremidis, "Spatial photonics in nonlinear waveguide arrays," Opt. Express 13, 1780-1796 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-06-1780. [CrossRef] [PubMed]
  3. S. Somekh, E. Garmire, A. Yariv, H. L. Garvin, and R. G. Hunsperger, "Channel optical waveguide directional couplers," Appl. Phys. Lett. 22, 46 (1973). [CrossRef]
  4. D. N. Christodoulides and R. I. Joseph, "Discrete self-focusing in nonlinear arrays of coupled waveguides," Opt. Lett. 13, 794-796 (1988). [CrossRef] [PubMed]
  5. S. Longhi, "Transmission and localization control by ac fields in tight-binding lattices with an impurity," Phys. Rev. B 73, 193305 (2006). [CrossRef]
  6. A. Fratalocchi and G. Assanto, "Universal character of the discrete nonlinear Schrödinger equation," Phys. Rev. A 76, 042108 (2007). [CrossRef]
  7. T. Pertsch, P. Dannberg, W. Elflein, A. Brauer, and F. Lederer, "Optical Bloch oscillations in temperature tuned waveguide arrays," Phys. Rev. Lett. 83, 4752 (1999). [CrossRef]
  8. R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, "Experimental observation of linear and nonlinear optics Bloch oscillations," Phys. Rev. Lett. 83, 4756 (1999). [CrossRef]
  9. M. J. Ablowitz and Z. H. Musslimani, "Discrete diffraction managed spatial solitons," Phys. Rev. Lett. 87, 254102 (2001). [CrossRef] [PubMed]
  10. P. Millar, J. S. Aitchison, J. U. Kang, G. I. Stegeman, A. Villeneuve, G. T. Kennedy, and W. Sibbett, "Nonlinear waveguide arrays in AlGaAs," J. Opt. Soc. Am. B 14, 3224 (1997). [CrossRef]
  11. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, "Diffraction Management," Phys. Rev. Lett. 85, 1863 (2000). [CrossRef] [PubMed]
  12. A. B. Aceves, C. De Angelis, T. Peschel, R. Muschall, F. Lederer, S. Trillo, and S. Wabnitz, "Discrete self-trapping, soliton interactions, and beam steering in nonlinear waveguide arrays," Phys. Rev. E 53, 1172 (1996). [CrossRef]
  13. H. S. Eisenberg, Y. Silberberg, R. Morandotti, R. Boyd and J. S. Aitchison, "Discrete spatial optical solitons in waveguide arrays," Phys. Rev. Lett. 81, 3383-3386 (1998). [CrossRef]
  14. A. L. Jones, "Coupling of optical fibers and scattering in fibers," J. Opt. Soc. Am. 55, 261 (1965). [CrossRef]
  15. S. M. Jensen, "The nonlinear coherent coupler," IEEE J. Quantum Electron. QE- 18, 1580 (1982). [CrossRef]
  16. A. B. Aceves and M. Santagiustina, "Bistable and tristable soliton switching in collinear arrays of linearly coupled waveguides," Phys. Rev. E 56, 1113 (1997). [CrossRef]
  17. D. N. Christodoulides and E. D. Eugenieva, "Blocking and routing discrete solitons in two-dimensional networks of nonlinear waveguide arrays," Phys. Rev. Lett. 87, 233901 (2001). [CrossRef] [PubMed]
  18. W. Królikowski and Y. S. Kivshar, "Soliton-based optical switching in waveguide arrays," J. Opt. Soc. Am. B 13, 876-887 (1996). [CrossRef]
  19. W. Królikowski, U. Trutschel, M. Cronin-Golomb, and C. Schmidt-Hattenberger, "Solitonlike optical switching in a circular fiber array," Opt. Lett. 19, 320-322 (1994). [CrossRef] [PubMed]
  20. I. Garanovich, A. Sukhorukov, and Y. Kivshar, "Soliton control in modulated optically-induced photonic lattices," Opt. Express 13, 5704-5710 (2005), http://www.opticsexpress.org /abstract.cfm?URI=oe-13-15-5704. [CrossRef] [PubMed]
  21. L. Hadzievski, A. Maluckov, M. Stepic, and D. Kip, "Power controlled soliton stability and steering in lattices with saturable nonlinearity," Phys. Rev. Lett. 93, 033901 (2004). [CrossRef] [PubMed]
  22. A. B. Aceves, C. De Angelis, S. Trillo, and S. Wabnitz, "Storage and steering of self-trapped discrete solitons in nonlinear waveguide arrays," Opt. Lett. 19, 332-334 (1994). [CrossRef] [PubMed]
  23. C. Schmidt-Hattenberger, U. Trutschel, and F. Lederer, "Nonlinear switching in multiple-core couplers," 16, 294-296 (1991).
  24. A. Fratalocchi, G. Assanto, K. A. Brzdakiewicz, and M. A. Karpierz, "All-optical switching and beam steering in tunable waveguide arrays," Appl. Phys. Lett. 86, 051112 (2005). [CrossRef]
  25. U. Peschel, R. Morandotti, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, "Nonlinearly induced escape from a defect state in waveguide arrays," Appl. Phys. Lett. 75, 1348 (1999). [CrossRef]
  26. R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, "Dynamics of discrete solitons in optical waveguide arrays," Phys. Rev. Lett. 83, 2726 (1999). [CrossRef]
  27. R. A. Vicencio, M. I. Molina, and Y. S. Kivshar, "Switching of discrete optical solitons in engineered waveguide arrays," Phys. Rev. E 70, 026602 (2004). [CrossRef]
  28. O. Bang and P. D. Miller, "Exploiting discreteness for switching in waveguide arrays," Opt. Lett. 21, 1105 (1996). [CrossRef] [PubMed]
  29. R. R. A. Syms, "Approximate solution of eigenmode problems for layered coupled arrays," IEEE J. Quantum Electron. QE- 23, 525-532 (1987). [CrossRef]
  30. A. Szameit, H. Trompeter, M. Heinrich, F. Dreisow, U. Peschel, T. Pertsch, S. Nolte, F. Lederer, and A. Tünnermann, "Fresnel's laws in discrete optical media", New J. Phys. 10, 103020 (2008). [CrossRef]
  31. T. Pertsch, U. Peschel, and F. Lederer, "Discrete solitons in inhomogeneous waveguide arrays," Chaos 13, 744 (2003). [CrossRef] [PubMed]
  32. R. Morandotti, H. S. Eisenberg, D. Mandelik, Y. Silberberg, D. Modotto, M. Sorel, C. R. Stanley, and J. S. Aitchison, "Interactions of discrete solitons with structural defects," Opt. Lett. 28, 834 (2003). [CrossRef] [PubMed]
  33. M. Matsumoto, S. Katayama, and A. Hasegawa, "Optical switching in nonlinear waveguide arrays with a longitudinally decreasing coupling coefficient," Opt. Lett. 20, 1758 (1995). [CrossRef] [PubMed]
  34. S. Suntsov, K. G. Makris, D. N. Christodoulides, G. I. Stegeman, R. Morandotti, Maïte Volatier, V. Aimez, R. Arès, C. E. Rüter, and D. Kip, "Optical modes at the interface between two dissimilar discrete meta-materials," Opt. Express 15, 4663-4670 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-8-4663. [CrossRef] [PubMed]
  35. A. Locatelli, M. Conforti, D. Modotto, and C. De Angelis, "Discrete negative refraction in photonic crystal waveguide arrays," Opt. Lett. 31, 1343-1345 (2006). [CrossRef] [PubMed]
  36. D. Modotto, M. Conforti, A. Locatelli, and C. De Angelis, "Imaging properties of multimode photonic crystal waveguides and waveguide arrays," J. Lightwave Technol. 25, 402-409 (2007). [CrossRef]
  37. R. Muschall, C. Schmidt-Hattenberger, and F. Lederer, "Spatially solitary waves in arrays of nonlinear waveguides," Opt. Lett. 19, 323-325 (1994). [CrossRef] [PubMed]
  38. A. B. Aceves, C. De Angelis, T. Peschel, R. Muschall, F. Lederer, S. Trillo, and S. Wabnitz, "Discrete self-trapping, soliton interactions, and beam steering in nonlinear waveguide arrays," Phys. Rev. E 53, 1172-1189 (1996). [CrossRef]
  39. I. Makasyuk, Z. Chen, and J. Yang, "Band-Gap Guidance in Optically Induced Photonic Lattices with a Negative Defect," Phys. Rev. Lett. 96, 223903 (2006). [CrossRef] [PubMed]
  40. H. Zhuo, X. Fu, Y. Hu, and S. Wen, "Compensation of the influence of loss for a spatial soliton in a dissipative modulated Bessel optical lattice," J. Opt. Soc. Am. B 24, 2208-2212 (2007). [CrossRef]
  41. R. Burioni, D. Cassi, P. Sodano, A. Trombettoni, and A. Vezzani, "Propagation of discrete solitons in inhomogeneous networks," Chaos 15, 043501 (2005). [CrossRef]
  42. J. M. Moison and C. Minot, French Patent n° 07 54872 (2007).
  43. E. Kapon, J. Katz, and A. Yariv, "Supermode analysis of phase-locked arrays of semiconductor lasers," Opt. Lett. 9, 125 (1984). [CrossRef] [PubMed]
  44. J. M. Moison and C. Minot, French Patent n° 08 05307 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited