OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 5 — Mar. 2, 2009
  • pp: 3211–3225

Twente Optical Perfusion Camera: system overview and performance for video rate laser Doppler perfusion imaging

Matthijs Draijer, Erwin Hondebrink, Ton van Leeuwen, and Wiendelt Steenbergen  »View Author Affiliations

Optics Express, Vol. 17, Issue 5, pp. 3211-3225 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (920 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the Twente Optical Perfusion Camera (TOPCam), a novel laser Doppler Perfusion Imager based on CMOS technology. The tissue under investigation is illuminated and the resulting dynamic speckle pattern is recorded with a high speed CMOS camera. Based on an overall analysis of the signal-to-noise ratio of CMOS cameras, we have selected the camera which best fits our requirements. We applied a pixel-by-pixel noise correction to minimize the influence of noise in the perfusion images. We can achieve a frame rate of 0.2 fps for a perfusion image of 128×128 pixels (imaged tissue area of 7×7 cm2) if the data is analyzed online. If the analysis of the data is performed offline, we can achieve a frame rate of 26 fps for a duration of 3.9 seconds. By reducing the imaging size to 128×16 pixels, this frame rate can be achieved for up to half a minute. We show the fast imaging capabilities of the system in order of increasing perfusion frame rate. First the increase of skin perfusion after application of capsicum cream, and the perfusion during an occlusion-reperfusion procedure at the fastest frame rate allowed with online analysis is shown. With the highest frame rate allowed with offline analysis, the skin perfusion revealing the heart beat and the perfusion during an occlusion-reperfusion procedure is presented. Hence we have achieved video rate laser Doppler perfusion imaging.

© 2009 Optical Society of America

OCIS Codes
(170.1650) Medical optics and biotechnology : Coherence imaging
(170.3340) Medical optics and biotechnology : Laser Doppler velocimetry
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: December 2, 2008
Revised Manuscript: February 6, 2009
Manuscript Accepted: February 9, 2009
Published: February 17, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics

Matthijs Draijer, Erwin Hondebrink, Ton van Leeuwen, and Wiendelt Steenbergen, "Twente Optical Perfusion Camera: system overview and performance for video rate laser Doppler perfusion imaging," Opt. Express 17, 3211-3225 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Bonner and R. Nossal, "Model for Laser Doppler Measurements of Blood Flow in Tissue," Appl. Opt. 20, 2097-2107 (1981). [CrossRef] [PubMed]
  2. Y. Aizu and T. Asakura, "Bio-Speckle Phenomena and Their Application to The Evaluation Of Blood Flow," Opt. Laser Technol. 23, 205-219 (1991). [CrossRef]
  3. A. Serov,W. Steenbergen, and F. F. M. de Mul, "Laser Doppler Perfusion ImagingWith A Complimentary Metal Oxide Semiconductor Image Sensor," Opt. Lett. 27, 300-302 (2002). [CrossRef]
  4. J. D. Briers, "Laser Doppler and Time-Varying Speckle: A reconciliation," J. Opt. Soc. Am. A 13, 45-350 (1996). [CrossRef]
  5. J. D. Briers, "Laser Doppler, Speckle and Related Techniques for Blood Perfusion Mapping and Imaging," Physiological Measurements 22, R35-R66 (2001). [CrossRef]
  6. C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, "A comparison of two laser-based methods for determination of burn scar perfusion: Laser Doppler versus laser speckle imaging," Burns 31, 744-752 (2005). [CrossRef] [PubMed]
  7. M. J. Draijer, E. Hondebrink, T. G. van Leeuwen, and W. Steenbergen, "Connecting laser Doppler perfusion imaging and laser speckle contrast analysis," Proc SPIE 6863, 68,630C-68,630C-8 (2008).
  8. A. F. Fercher and J. D. Briers, "Flow Visualization By Means of Single-Exposure Speckle Photography," Opt. Commun. 37, 326-330 (1981). [CrossRef]
  9. J. D. Briers, G. Richards, and X. W. He, "Capillary Blood Flow Monitoring Using Laser Speckle Contrast Analysis (LASCA)," J. Biomed. Opt. 4, 164-175 (1999). [CrossRef]
  10. M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, "Review of laser speckle contrast techniques for visualizing tissue perfusion," Lasers Med. Sci. (2008). [PubMed]
  11. H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, "Modified laser speckle imaging method with improved spatial resolution," J. Biomed. Opt. 8, 559-564 (2003). [CrossRef] [PubMed]
  12. H. Cheng and T. Q. Duong, "Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging," Opt. Lett. 32, 2188-2190 (2007). [CrossRef] [PubMed]
  13. Z. B. M. Niazi, T. J. H. Essex, R. Rapini, D. Scott, N. R. McLean, and M. J. M. Black, "New Laser Doppler Scanner, A Valuable Adjunct in Burn Depth Assessment," Burns 19, 485-489 (1993). [CrossRef] [PubMed]
  14. S. A. Pape, C. A. Skouras, and P. O. Byrne, "An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth," Burns 27, 233-239(7) (2001). [CrossRef] [PubMed]
  15. F. W. Kloppenberg, G. I. Beerthuizen, and H. J. ten Duis, "Perfusion of burn wounds assessed by laser Doppler imaging is related to burn depth and healing time," Burns 27, 359-363 (2001). [CrossRef] [PubMed]
  16. E. J. Droog, W. Steenbergen, and F. Sjoberg, "Measurement of Depth of Burns By Laser Doppler Perfusion Imaging," Burns 27, 561-568 (2001). [CrossRef] [PubMed]
  17. R. Bray, K. Forrester, C. Leonard, R. McArthur, J. Tulip, and R. Lindsay, "Laser Doppler Imaging of Burn Scars: A Comparison of Wavelength And Scanning Methods," Burns 29, 199-206 (2003). [CrossRef] [PubMed]
  18. E. La Hei, A. Holland, and H. Martin, "Laser Doppler Imaging of paediatric burns: Burn wound outcome can be predicted independent of clinical examination," Burns 32, 550-553 (2006). [CrossRef] [PubMed]
  19. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, "Dynamic Imaging of Cerebral Blood Flow Using Laser Speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001). [CrossRef] [PubMed]
  20. F. F. M. de Mul, J. Blaauw, J. G. Aarnoudse, A. J. Smit, and G. Rakhorst, "Diffusion model for iontophoresis measured by laser-Doppler perfusion flowmetry, applied to normal and preeclamptic pregnancies," J. Biomed. Opt. 12, 14,032 - 1 (2007). [CrossRef]
  21. A. Serov, B. Steinacher, and T. Lasser, "Full-Field Laser Doppler Perfusion Imaging and Monitoring With An Intelligent CMOS Camera," Opt. Express 13, 3681-3689 (2005). [CrossRef] [PubMed]
  22. A. Serov and T. Lasser, "High-speed laser Doppler perfusion imaging using an integrating CMOS image sensor," Opt. Express 13, 6416-6428 (2005). [CrossRef] [PubMed]
  23. M. J. Draijer, E. Hondebrink, W. Steenbergen, and T. G. van Leeuwen, "Laser Doppler Perfusion Imaging with a high-speed CMOS-camera," Proc. SPIE 6631, 66310N (2007). [CrossRef]
  24. A. Serov, W. Steenbergen, and F. de Mul, "Prediction of the photodetector signal generated by Doppler-induced speckle fluctuations: theory and some validations," J. Opt. Soc. Am. A 18, 622-630 (2001). [CrossRef]
  25. E. Hecht, Optics, 3rd ed. (Addison-Wesley, 1998).
  26. G. Rieke, Detection of Light, 2nd ed. (Cambridge University Press, 2003).
  27. A. Humeau, J. L. Saumet, and J. P. L. Huillier, "Simplified Model of Laser Doppler Signals During Reactive Hyperaemia," Medical & Biological Engineering & Computing 38, 80-87 (2000). [CrossRef] [PubMed]
  28. Q. Gu, B. R. Hayes-Gill, and S. P. Morgan, "Laser Doppler blood flow complementary metal oxide semiconductor imaging sensor with analog on-chip processing," Appl. Opt. 47, 2061-2069 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (3648 KB)     
» Media 2: AVI (21590 KB)     
» Media 3: AVI (11501 KB)     
» Media 4: AVI (15083 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited