OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 5 — Mar. 2, 2009
  • pp: 3255–3263

Design and fabrication of nano-structured gradient index microlenses

F. Hudelist, R. Buczynski, A.J. Waddie, and M.R. Taghizadeh  »View Author Affiliations


Optics Express, Vol. 17, Issue 5, pp. 3255-3263 (2009)
http://dx.doi.org/10.1364/OE.17.003255


View Full Text Article

Enhanced HTML    Acrobat PDF (1153 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel fabrication technology for nano-structured graded index micro-optical components, based on the stack-and-draw method used for photonic crystal fibres. These discrete structures can be described with an effective refractive index distribution. Furthermore we present spherical nano-structured microlenses with a flat facet fabricated with this method and designed using an algorithm based on the Maxwell-Garnett mixing formula. Finally we show theoretical verification by using FDTD simulations for a nano-structured lens as well as experimental data obtained in the microwave regime.

© 2009 Optical Society of America

OCIS Codes
(220.3630) Optical design and fabrication : Lenses
(230.3990) Optical devices : Micro-optical devices
(260.2065) Physical optics : Effective medium theory

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: November 30, 2008
Revised Manuscript: January 16, 2009
Manuscript Accepted: February 6, 2009
Published: February 17, 2009

Citation
F. Hudelist, R. Buczynski, A. J. Waddie, and M. R. Taghizadeh, "Design and fabrication of nano-structured gradient index microlenses," Opt. Express 17, 3255-3263 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3255


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Gomez-Reino, M. V. Perez, and C. Bao, Gradient-Index Optics - Fundamentals and Applications (Springer, 2002).
  2. L. Hao, S. Bangren, W. Jijiang, G. Lijun, and L. Aimei, "Fabrication of gradient refractive index ball lenses," Opt. Lasers Eng. 46, 252-256 (2007).
  3. M. Bass, Handbook of Optics, chap. 9 (McGraw-Hill Professional, 2000).
  4. A. Bjarklev, J. Broeng, and A. Bjarklev, Photonic Crystal Fibres (Kluwer Academic Publishers, 2003). [CrossRef]
  5. H. Kurt, E. Colak, O. Cakmak, H. Caglayan, and E. Ozbay, "The focusing effect of graded index photonic crystals," Appl. Phys. Lett. 93, 171,108 (2008), http://link.aip.org/link/?APL/93/171108/1. [CrossRef]
  6. A. Sihvola, Electromagnetic mixing formulas and applications (Institution of Electrical Engeneers, London, UK, 1999). [CrossRef]
  7. L. Li, "New formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A 14, 2758-2767 (1997). [CrossRef]
  8. E. Popov and M. Neviere, "Maxwell equations in Fourier space: fast-converging formulation for diffraction by arbitrary shaped, periodic, anisotropic media," J. Opt. Soc. Am. A 18, 2886-2894 (2001). [CrossRef]
  9. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, MA, 2005).
  10. S. Kirkpatrick, C. GelattJr, and M. Vecchi, "Optimization by Simulated Annealing," Science 220, 671 (1983). [CrossRef] [PubMed]
  11. E. Hecht, Optics, 4th ed. (Addison Wesley, 2002).
  12. D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, "Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers," Appl. Phys. B: Lasers Opt.531-538 (2008).
  13. Z. Sacks, D. Kingsland, R. Lee, and J. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition." IEEE Trans. Antenn. Propag. 43, 1460-1463 (1995). [CrossRef]
  14. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. S. J. Russell, "All-solid photonic bandgap fiber," Opt. Lett. 29, 2369-2371 (2004), http://ol.osa.org/abstract.cfm?URI=ol-29-20-2369. [CrossRef] [PubMed]
  15. X. Feng, T. Monro, P. Petropoulos, V. Finazzi, and D. Hewak, "Solid microstructured optical fiber," Opt. Express 11, 2225-2230 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-18-2225. [CrossRef] [PubMed]
  16. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, "Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm," Opt. Express 13, 8452-8459 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-21-8452. [CrossRef] [PubMed]
  17. T. Huang, Z. Li, M. Li, D. Chetwynd, and C. Gosselin, "Conceptual design and dimensional synthesis of a novel 2-DOF translational parallel robot for pick-and-place operations," Journal of Mechanical Design 126, 449-455 (2004). [CrossRef]
  18. J. Birch, G. Simonis, M. Afsar, R. Clarke, J. Dutta, H. Frost, X. Gerbaux, A. Hadni, W. Hall, R. Heidinger, W. Ho, C. Jones, F. Koniger, R. Moore, H. Matsuo, T. Nakano, W. Richter, K. Sakai, M. Stead, U. Stumper, R. Vigil, and T. Wells, "An intercomparison of measurement techniques for the determination of the dielectric properties of solids at near millimetre wavelengths," IEEE T. Microw. Theory. 42, 956-965 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited