OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 5 — Mar. 2, 2009
  • pp: 3285–3290

Ultrabroadband fiber Bragg gratings written with a highly chirped phase mask and Infrared femtosecond pulses

Martin Bernier, Yunlong Sheng, and Réal Vallée  »View Author Affiliations

Optics Express, Vol. 17, Issue 5, pp. 3285-3290 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (407 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The writing of ultrabroadband Fiber Bragg Gratings (FBGs) is demonstrated in both hydrogen-free and hydrogen-loaded standard telecom fibers by the use of IR femtosecond pulses and a highly chirped first-order phase-mask. A high reflectivity filter providing a wavelength coverage of five telecom bands (E+S+C+L+U) is demonstrated over a single 35mm long grating inscribed in only 30s in H2-loaded SMF-28 fiber. Refractive index modulation of about 2.5×10-3 and 5×10-3 are obtained after a few second exposure time in both hydrogen-free and hydrogen-loaded SMF28 fibers. This report paves the way to the development of new broadband fiber-based optical components such as multi-wavelengths filters and sources.

© 2009 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(230.1480) Optical devices : Bragg reflectors
(350.3390) Other areas of optics : Laser materials processing

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 12, 2009
Revised Manuscript: February 11, 2009
Manuscript Accepted: February 11, 2009
Published: February 17, 2009

Martin Bernier, Yunlong Sheng, and Réal Vallée, "Ultrabroadband fiber Bragg gratings written with a highly chirped phase mask and infrared femtosecond pulses," Opt. Express 17, 3285-3290 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Slattery, D. N. Nikogosyan, and G. Brambilla, "Fiber Bragg grating inscription by high-intensity femtosecond UV laser light: comparison with other existing methods of fabrication," J. Opt. Soc. Am. B 22, 354-361 (2005). [CrossRef]
  2. S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, "Induced Bragg Gratings in Optical Fibers and Waveguides Using an Ultrafast Infrared Laser and a Phase Mask," Laser Chem. 2008, 416251 (2008).
  3. M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, "Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm," Opt. Lett. 32, 454-456 (2007). [CrossRef] [PubMed]
  4. E. Wikszak, J. Thomas, J. Burghoff, B. Ortaç, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, "Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating," Opt. Lett. 31, 2390-2392 (2006). [CrossRef] [PubMed]
  5. G. Androz, D. Faucher, M. Bernier, and R. Vallée, "Monolithic fluoride-fiber laser at 1480 nm using fiber Bragg gratings," Opt. Lett. 32, 1302-1304 (2007). [CrossRef] [PubMed]
  6. Y. Dai, X. Chen, J. Sun, and S. Xie, "Wideband multichannel dispersion compensation based on a strongly chirped sampled Bragg grating and phase shifts," Opt. Lett. 31, 311-313 (2006). [CrossRef] [PubMed]
  7. G. Brochu, S. LaRochelle, and R. Slavick, "Modeling and experimental demonstration of ultracompact multiwavelength distributed Fabry-Pérot fiber lasers," J. Lightwave Technol. 22, 44-53 (2005). [CrossRef]
  8. A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, "All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings," Appl. Phys. Lett. 66, 1053-1055 (1995). [CrossRef]
  9. J. Thomas, C. Voigtländer, D. Schimpf, F. Stutzki, E. Wikszak, J. Limpert, S. Nolte, and A. Tünnermann, "Continuously chirped fiber Bragg gratings by femtosecond laser structuring," Opt. Lett. 33, 1560-1562 (2008). [CrossRef] [PubMed]
  10. R. Vallée, M. Bernier, A. Saliminia, and S. L. Chin, "Fiber Bragg Gratings Based on 1D Filamentation of Femtosecond Pulses," in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (2007), paper BWB3.
  11. D. J. Kitcher, A. Nand, S. A. Wade, R. Jones, G. W. Baxter, and S. F. Collins, "Directional dependence of spectra of fiber Bragg gratings due to excess loss," J. Opt. Soc. Am. A 23, 2906-2911 (2006). [CrossRef]
  12. M. Ibsen, M. Durkin, M. Zervas, A. Grudinin, and R. Laming, "Custom design of long chirped Bragg gratings: application to gain-flattening filter with incorporated dispersion compensation," IEEE Photon. Technol. Lett. 12, 498-500 (2000). [CrossRef]
  13. L. Dong, G. Qi, M. Marro, V. Bhatia, L. Hepbrunt, M. Swan, A. Collier, and D. Weidman, "Suppression of cladding mode coupling loss in fiber Bragg gratings," J. Lightwave Technol. 18, 1583-1590 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited