OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 5 — Mar. 2, 2009
  • pp: 3291–3298

Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy

G. Baffou, M.P. Kreuzer, F. Kulzer, and R. Quidant  »View Author Affiliations


Optics Express, Vol. 17, Issue 5, pp. 3291-3298 (2009)
http://dx.doi.org/10.1364/OE.17.003291


View Full Text Article

Enhanced HTML    Acrobat PDF (586 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a thermal imaging technique based on fluorescence polarization anisotropy measurements, which enables mapping the local temperature near nanometer-sized heat sources with 300 nm spatial resolution and a typical accuracy of 0.1 °C. The principle is demonstrated by mapping the temperature landscape around plasmonic nano-structures heated by near-infrared light. By assessing directly the molecules’ Brownian dynamics, it is shown that fluorescence polarization anisotropy is a robust and reliable method which overcomes the limitations of previous thermal imaging techniques. It opens new perspectives in medicine, nanoelectronics and nanofluidics where a control of temperature of a few degrees at the nanoscale is required.

© 2009 Optical Society of America

OCIS Codes
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(180.2520) Microscopy : Fluorescence microscopy
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: December 17, 2008
Revised Manuscript: January 30, 2009
Manuscript Accepted: January 30, 2009
Published: February 17, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics

Citation
G. Baffou, M. P. Kreuzer, F. Kulzer, and R. Quidant, "Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy," Opt. Express 17, 3291-3298 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3291


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, "Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy," Nano Lett. 7, 1929-1934 (2007). [CrossRef] [PubMed]
  2. P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, "Au nanoparticles target cancer," Nano Today 2, 18 (2007). [CrossRef]
  3. D. Pissuwana, S. M. Valenzuelaa, and M. B. Cortie, "Therapeutic possibilities of plasmonically heated gold nanoparticles," Trends Biotechnol. 24, 62 (2006). [CrossRef]
  4. G. Han, P. Ghosh, M. De, and V. M. Rotello, "Drug and Gene Delivery using Gold Nanoparticles," NanoBioTechnology 3, 40 (2007). [CrossRef]
  5. A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Mohwald, and G. B. Sukhorukov, "The Role of Metal Nanoparticles in Remote Release of Encapsulated Materials," Nano Lett. 5, 1371 (2005). [CrossRef] [PubMed]
  6. L. Cao, D. Barsic, A. Guichard, and M. Brongersma, "Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes," Nano Lett. 7, 3523-3527 (2007). [CrossRef] [PubMed]
  7. G. L. Liu, J. Kim, L. Y. and L. P. Pee, "Optofluidic control using photothermal nanoparticles," Nat. Mater. 5, 27 (2006). [CrossRef]
  8. D. Ross, M. Gaitan, and L. E. Locascio, "Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye," Anal. Chem. 73, 4117 (2001). [CrossRef] [PubMed]
  9. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nat. Phys. 3, 477 (2007). [CrossRef]
  10. V. Garces-Chavez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmon polariton excitation," Phys. Rev. B 73, 085417 (2006). [CrossRef]
  11. A. Bar-Cohen, P. Wang, and E. Rahim, "Thermal management of high heat flux nanoelectronic chips," Microgravity Sci. Technol. 19, 48 (2007).
  12. D. Boyer, P. Tamarat, A. Maali, and B. Lounis, M. Orrit, "Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers," Science 297, 1160 (2002). [CrossRef] [PubMed]
  13. M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognet, and B. Lounis, "Absorption and scattering microscopy of single metal nanoparticles," Phys. Chem. Chem. Phys. 8, 3486 (2006). [CrossRef] [PubMed]
  14. D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, "Single NanoParticle Photothermal Tracking (SNaPT) of 5 nm gold beads in live cells," Biophys. J. 91, 4598 (2006). [CrossRef] [PubMed]
  15. H. M. Pollock and A. Hammiche, "Micro-thermal analysis: techniques and applications," J. Phys. D-Appl. Phys. 34, R23 (2001). [CrossRef]
  16. J. W. Pomeroy, M. Kuball, D. J. Wallis, A. M. Keir, K. P. Hilton, R. S. Balmer, M. J. Uren, T. Martin, and P. J. Heard, "Thermal mapping of defects in AlGaN/GaN heterostructure field-effect transistors using micro-Raman spectroscopy," Appl. Phys. Lett. 87, 103,508 (2005). [CrossRef]
  17. K. K. Liu, K. L. Davis, and M. D. Morris, "Raman spectroscopic measurement of spatial and temporal gradients in operating electrophoresis capillaries," Anal. Chem. 66, 3744 (1994). [CrossRef] [PubMed]
  18. P. L¨ow, B. Kim, N. Takama, and C. Bergaud, "High-spatial-resolution surface-temperature mapping using fluorescent thermometry," Small 4, 908 (2008). [CrossRef] [PubMed]
  19. G. A. Robinson, R. P. Lucht, and M. Laurendeau, "Two-color planar laser-induced fluorescence thermometry in aqueous solutions," Appl. Opt. 47, 2852 (2008). [CrossRef] [PubMed]
  20. B. Samson, L. Aigouy, P. L¨ow, C. Bergaud, B. J. Kim, and M. Mortier, "ac thermal imaging of nanoheaters using a scanning fluorescent probe," Appl. Phys. Lett. 92, 023,101 (2008). [CrossRef]
  21. B. Valeur, Molecular Fluorescence: Principles and Applications (Wiley-VCH, 2002). Chap. 5.
  22. A. Kawski, "Fluorescence anisotropy: Theory and applications of rotational polarization," Crit. Rev. Anal. Chem. 23, 459 (1993). [CrossRef]
  23. R. Zondervan, F. Kulzer, H. van der Meer, J. A. J. M. Disselhorst, and M. Orrit, "Laser-Driven Microsecond Temperature Cycles Analyzed by Fluorescence Polarization Microscopy," Biophys. J. 90, 2958 (2006).Q3 [CrossRef] [PubMed]
  24. W. G., "Polarization of the fluorescence of macromolecules. 1. Theory and experiment method," Biochem J. 51, 145 (1952).
  25. A. H. A. Clayton, Q. S. Hanley, D. J. Arndt-Jovin, V. Subramaniam, and T. M. Jovin, "Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM)," Biophys. J. 83, 1631-1649 (2002). [CrossRef] [PubMed]
  26. R. F. Chen and R. L. Bowman, "Fluorescence polarization - measurement with ultraviolet-polarizing filters in a spectrophotofluorometer," Science 147, 729-732 (1965). [CrossRef] [PubMed]
  27. N. Periasamy, M. Armijo, and A. S. Verkman, "Picosecond rotation of small polar fluorophores in the cytosol of sea-urchin eggs," Biochem. 30, 11,836-11,841 (1991).
  28. N. S. Cheng, "Formula for the viscosity of a glycerol-water mixture," Ind. Eng. Chem. Res. 47, 3285 (2008). [CrossRef]
  29. D. Axelrod, "Carbocyanine dye orientation in red-cell membrane studied by microscopic fluorescence polarization," Biophys. J. 26, 557-573 (1979). [CrossRef] [PubMed]
  30. Q5. F. X. Gu, R. Karnik, A. Z. Wang, F. Alexis, E. Levy-Nissenbaum, S. Hong, R. S. Langer, and O. C. Farokhzad, "Targeted nanoparticles for cancer therapy," Nano Today 2, 14 (2007). [CrossRef]
  31. K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Freussner, A. von Deimling, N. Waldoefner, R. Felix, and A. Jordan, "Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme," J. Neuro-Oncol. 81, 53 (2007). [CrossRef]
  32. B. Nikoobakht and M. A. El-Sayed, "Preparation and growth mechanism of gold nanorods (NRs) using seedmediated growth method," Chem. Mat. 15, 1957 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited