OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 5 — Mar. 2, 2009
  • pp: 3305–3315

Higher order finite-difference frequency domain analysis of 2-D photonic crystals with curved dielectric interfaces

Yen-Chung Chiang  »View Author Affiliations

Optics Express, Vol. 17, Issue 5, pp. 3305-3315 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (255 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A high-order finite-difference frequency domain method is proposed for the analysis of the band diagrams of two-dimensional photonic crystals. This improved formulation is based on Taylor series expansion, local coordinate transformation, boundary conditions matching, and the generalized Douglas scheme. The nine-point second-order formulas are extended to fourth-order accuracy. This proposed scheme can deal with piecewise homogeneous structures with curved dielectric interfaces.

© 2009 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Photonic Crystals

Original Manuscript: January 2, 2009
Revised Manuscript: February 11, 2009
Manuscript Accepted: February 13, 2009
Published: February 17, 2009

Yen-Chung Chiang, "Higher order finite-difference frequency domain analysis of 2-D photonic crystals with curved dielectric interfaces," Opt. Express 17, 3305-3315 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990). [CrossRef] [PubMed]
  4. M. Plihal and A. A. Maradudin, "Photonic band structure of two-dimensional systems: The triangular lattice," Phys. Rev. B 44, 8565-8571 (1991). [CrossRef]
  5. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Existence of a photonic band gap in two dimensions," Appl. Phys. Lett. 61, 495-497 (1992). [CrossRef]
  6. C. T. Chan, Q. L. Yu, and K. M. Ho, "Order-N spectral method for electromagnetic waves," Phys. Rev. B 51, 16635-16642 (1995). [CrossRef]
  7. M. Qiu and S. He, "A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions," Appl. Phys. 87, 8268-8275 (2000). [CrossRef]
  8. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edition, (Artech House, MA USA, 2005).
  9. H. Y. D. Yang, "Finite difference analysis of 2-D photonic crystals," IEEE Trans. Microwave Theory Tech. 44, 2688-2695 (1996). [CrossRef]
  10. K. Bierwirth, N. Schulz, and F. Arndt, "Finite-difference analysis of rectangular dielectric waveguide structures," IEEE Trans. Microwave Theory Tech. 34, 1104-1114 (1986). [CrossRef]
  11. G. R. Hadley and R. E. Smith, "Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions," J. Lightwave Technol. 13, 465-469 (1995). [CrossRef]
  12. W. P. Huang, C. L. Xu, S. T. Chu, and S. K. Chaudhuri, "The finite-difference vector beam propagation method: analysis and assessment," J. Lightwave Technol. 10, 295-305 (1992). [CrossRef]
  13. Z. Zhu and T. G. Brown, "Full-vectorial finite-difference analysis of microstructured optical fibers," Opt. Express 10,853-864 (2002), http://www.opticsexpress.org/abstract.cfm?uri=OE-10-17-853. [PubMed]
  14. M. S. Stern, "Semivectorial polarized finite difference method for optical waveguides with arbitrary index profiles," Proc. Inst. Elect. Eng. J. 135, 56-63 (1988).
  15. C. Vassallo, "Improvement of finite difference methods for step-index optical waveguides," Proc. Inst. Elect. Eng. J. 139, 137-142 (1992).
  16. Y.-P. Chiou, Y.-C. Chiang, and H.-C. Chang, "Improved three-point formulas considering the interface conditions in the finite-difference analysis of step-index optical devices," J. Lightwave Technol. 18, 243-251 (2000). [CrossRef]
  17. J. Xia and J. Yu, "New finite-difference scheme for simulations of step-index waveguides with tilt interfaces," IEEE Photon. Technol. Lett. 15, 1237-1239 (2003). [CrossRef]
  18. Y.-C. Chiang, Y.-P. Chiou, and H.-C. Chang, "Improved full-vectorial finite-difference mode solver for optical waveguides with step-index profiles," J. Lightwave Technol. 20, 1609-1618 (2002). [CrossRef]
  19. Y.-C. Chiang, Y.-P. Chiou, and H.-C. Chang, "Finite-difference frequency-domain analysis of 2-D photonic crystals with curved dielectric interfaces," J. Lightwave Technol. 26, 971-976 (2008). [CrossRef]
  20. C.-P. Yu and H.-C. Chang, "Compact finite-difference frequency-domain method for the analysis of twodimensional photonic crystals," Opt. Express 12,1397-1408 (2004), http://www.opticsexpress.org/abstract.cfm?uri=OE-12-7-1397. [CrossRef] [PubMed]
  21. P.-J. Chiang, C.-P. Yu, and H.-C. Chang, "Analysis of two-dimensional photonic crystals using a multidomain pseudospectral method," Phys. Rev. E 75, 026703 (2007). [CrossRef]
  22. I. Harari and E. Turkel, "Accurate finite difference methods for time-harmonic wave propagation," J. Comput. Phys. 119, 252-270 (1995). [CrossRef]
  23. S. G. Johnson and J. D. Joannopoulos, "The MIT Photonic-Bands Package home page [on line]," http://ab-initio.mit.edu/mpb/.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited