OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 5 — Mar. 2, 2009
  • pp: 3322–3330

Theory of quantum light emission from a strongly-coupled single quantum dot photonic-crystal cavity system

S. Hughes and P. Yao  »View Author Affiliations


Optics Express, Vol. 17, Issue 5, pp. 3322-3330 (2009)
http://dx.doi.org/10.1364/OE.17.003322


View Full Text Article

Enhanced HTML    Acrobat PDF (326 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a rigorous medium-dependent theory for describing the quantum field emitted and detected from a single quantum dot exciton, strongly coupled to a planar photonic crystal nanocavity, from which the exact spectrum is derived. By using simple mode decomposition techniques, this exact spectrum is subsequently reduced to two separate user-friendly forms, in terms of the leaky cavity mode emission and the radiation mode emission. On application to study exciton-cavity coupling in the strong coupling regime, besides a pronounced modification of the usual vacuum Rabi spectral doublet, we predict several new effects associated with the leaky cavity mode emission, including the appearance of an off-resonance cavity mode and a loss-induced on-resonance spectral triplet. The cavity mode emission is shown to completely dominate the emitted spectrum, even for large cavity-exciton detunings, whereby the usual cavity-QED formulas developed for radiation-mode emission drastically fail. These predictions are in qualitative agreement with several “mystery observations” reported in recent experiments, and apply to a wide range of semiconductor cavities.

© 2009 Optical Society of America

OCIS Codes
(270.5580) Quantum optics : Quantum electrodynamics
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Quantum Optics

History
Original Manuscript: December 18, 2008
Revised Manuscript: February 5, 2009
Manuscript Accepted: February 6, 2009
Published: February 17, 2009

Citation
Stephen Hughes and P. Yao, "Theory of quantum light emission from a strongly-coupled single quantum dot photonic-crystal cavity system," Opt. Express 17, 3322-3330 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3322


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Einstein, "On the quantum theory of radiation" (English Translation), Z. Phys. 18, 121 (1917). Translated into English in Van derWaerden Sources of Quantum Mechanics (North Holland 1967) pp. 63-77. English translation by D. ter Haar, "The Old Quantum Theory," Pergamon Press, New York, p. 167 (1967).
  2. E. Moreau, I. Robert, J. M. Gerard, I. Abram, L. Manin, and V. Thierry-Mieg, "Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities," Appl. Phys. Lett. 79, 2865 (2001). [CrossRef]
  3. D. Fattal, E. Diamante, K. Inoue, and Y. Yamamoto, "Quantum teleportation with a quantum dot single photon source," Phys. Rev. Lett. 92, 7904 (2004). [CrossRef]
  4. W. Yao, R-B Liu, and L. J. Sham, "Theory of control of the spin-photon interface for quantum networks," Phys. Rev. Lett. 95, 030504 (2005). [CrossRef] [PubMed]
  5. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003). [CrossRef] [PubMed]
  6. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004). [CrossRef] [PubMed]
  7. E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M Gerard, and J. Bloch, "Exciton-photon strongcoupling regime for a single quantum dot embedded in a microcavity," Phys. Rev. Lett. 95, 067401 (2005). [CrossRef] [PubMed]
  8. J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum-semiconductor microcavity system," Nature 432, 197 (2004). [CrossRef] [PubMed]
  9. K. Hennessy, A. Badolato, M. Winger, A. Atature, S. Falt, E. L. Hu, A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896 (2007). [CrossRef] [PubMed]
  10. D. Press, S. Gotzinger, S. Reitzenstein, C. Hofmann, A. Loffler, M. Kamp, A. Forchel, and Y. Yamamoto, "Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime," Phys. Rev. Lett. 98, 117402 (2007). [CrossRef] [PubMed]
  11. See, e.g., J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, H. J. Kimble, "Deterministic generation of single photons from one atom trapped in a cavity," Science 303, 1992 (2004). [CrossRef] [PubMed]
  12. M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Bas, M. Bichler, M.-C. Amann, and J. J. Finley, "Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities," Phys. Rev. B161303(R) (2008). [CrossRef]
  13. H. T. Dung, L. Knoll and D-G. Welsch, "Spontaneous decay in the presence of dispersing and absorbing bodies: General theory and application to a spherical cavity," Phys. Rev. A 62, 053804 (2000). [CrossRef]
  14. S. Hughes, "Coupled-cavity QED using planar photonic crystals," Phys. Rev. Lett. 98, 083603 (2007). [CrossRef] [PubMed]
  15. M. Wubs, L.G. Suttorp and A. Lagendijk. "Multiple-scattering approach to interatomic interactions and superradiance in inhomogeneous dielectrics," Phys. Rev. A 70, 53823 (2004). [CrossRef]
  16. For simplicity we are assuming that F(R) is the same for both cavity and radiation leakage, but in reality this will depend on a number of factors, including the specific collection geometry of the detector.
  17. H. Carmichael, R. J. Brecha, M. G. Raizen, H. J. Kimble, and P. R. Rice, "Subnatural linewidth averaging for coupled atomic and cavity-mode oscillators," Phys. Rev. A 40, 5516 (1989). [CrossRef] [PubMed]
  18. L. C. Andreani, G. Panzarini, and J-M. Gerard, "Strong-coupling regime for quantum boxes in pillar microcavities: Theory," Phys. Rev. B 60, 13276 (1999). [CrossRef]
  19. G. Cui and M. G. Raymer, "Emission spectra and quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime," Phys. Rev. A 73, 053807 (2006). [CrossRef]
  20. A. Auffeves, B. Besga, J. M. Gerard, and J. P. Poizat, "Spontaneous emission spectrum of a two-level atom in a very-high-Q cavity," Phys. Rev. A 77, 063833 (2008). [CrossRef]
  21. T. Ochiai, J-I. Inoue, and K. Sakoda, "Spontaneous emission from a two-level atom in a bisphere microcavity," Phys. Rev. A 74, 063818 (2006). [CrossRef]
  22. Note an important correction to the emission spectrum in [21], namely G(R,rd;ω) and not Im[G(R,rd;ω)] appears, since a principal value term was neglected in that paper.
  23. See, e.g., "Statistical Methods in Quantum Optics 2," H. J. Carmichael, Springer, p. 235. (2008).
  24. T. Takagahara, "Theory of exciton dephasing in semiconductor quantum dots," Phys. Rev. B 60, 2638 (1999). [CrossRef]
  25. B. Krummheuer, V. M. Axt, and T. Kuhn, "Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots," Phys. Rev. B 65, 195313 (2002). [CrossRef]
  26. In the limit of only radiative decay and simple cavity and exciton modes, we confirm complete agreement between our PC-projected Green function spectrum and the master equation solution, which is to be expected for the model cavity structure if Γh = 0 (no in-plane decay).
  27. See, e.g., V. S. C. Manga Rao and S. Hughes, "Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient "on chip" single photon gun," Phys. Rev. Lett. 99, 193901 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited