OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 5 — Mar. 2, 2009
  • pp: 3331–3340

Improved signal-to-noise ratio of 10 GHz microwave signals generated with a mode-filtered femtosecond laser frequency comb

S. A. Diddams, M. Kirchner, T. Fortier, D. Braje, A. M. Weiner, and L. Hollberg  »View Author Affiliations


Optics Express, Vol. 17, Issue 5, pp. 3331-3340 (2009)
http://dx.doi.org/10.1364/OE.17.003331


View Full Text Article

Enhanced HTML    Acrobat PDF (1675 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We use a Fabry-Perot cavity to optically filter the output of a Ti:sapphire frequency comb to integer multiples of the original 1 GHz mode spacing. This effectively increases the pulse repetition rate, which is useful for several applications. In the case of low-noise microwave signal generation, such filtering leads to improved linearity of the high-speed photodiodes that detect the mode-locked laser pulse train. The result is significantly improved signal-to-noise ratio at the 10 GHz harmonic with the potential for a shot-noise limited single sideband phase noise floor near -168 dBc/Hz.

© 2009 Optical Society of America

OCIS Codes
(320.7160) Ultrafast optics : Ultrafast technology
(350.4010) Other areas of optics : Microwaves
(250.0040) Optoelectronics : Detectors

ToC Category:
Ultrafast Optics

History
Original Manuscript: September 29, 2008
Revised Manuscript: January 17, 2009
Manuscript Accepted: January 30, 2009
Published: February 18, 2009

Citation
S. A. Diddams, M. Kirchner, T. Fortier, D. Braje, A. M. Weiner, and L. Hollberg, "Improved signal-to-noise ratio of 10 GHz microwave signals generated with a mode-filtered femtosecond laser frequency comb," Opt. Express 17, 3331-3340 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3331


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Bartels, S. A. Diddams, C. W. Oates, G. Wilpers, J. C. Bergquist, W. H. Oskay, and L. Hollberg, "Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references," Opt. Lett. 30, 667-669 (2005). [CrossRef] [PubMed]
  2. J. J. McFerran, E. N. Ivanov, A. Bartels, G. Wilpers, C. W. Oates, S. A. Diddams, and L. Hollberg, "Low-noise synthesis of microwave signals from an optical source," Electron. Lett. 41, 36-37 (2006).
  3. M. I. Skolnik, Radar Handbook, 3rd Edition (McGraw-Hill New York, 2008).
  4. G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, "Quantum Projection Noise in an Atomic Fountain: A High Stability Cesium Frequency Standard," Phys. Rev. Lett. 82, 4619-4622 (1999). [CrossRef]
  5. A recent review of the work in this field is found in: Special issue on microwave photonics, J. Lightwave Tech. 262336-2810 (2008).
  6. E. N. Ivanov, S. A. Diddams, and L. Hollberg, "Analysis of noise mechanisms limiting the frequency stability of microwave signals generated with a femtosecond laser," IEEE J. Sel. Top. Quantum Electon. 9, 1059-1065 (2003). [CrossRef]
  7. E. N. Ivanov, S. A. Diddams, and L. Hollberg, "Study of the excess noise associated with demodulation of ultra-short infrared pulses," IEEE Trans. Ultrasonics, Ferroelectrics and Freq.Control 52, 1068-1074 (2005). [CrossRef]
  8. T. Ozeki and E. H. Hara, "Measurement of nonlinear distortion in photodiodes," Electron. Lett. 12, 81-82 (1976)
  9. K. J. Williams and R. D. Esman, "Observation of photodetector nonlinearities," Electron. Lett. 28, 731-732 (1992). [CrossRef]
  10. K. J. Williams, R. D. Esman, and M. Dagenais, "Effects of high space-charge fields on the response of microwave photodiodes," IEEE Photon. Technol. Lett. 6, 639-641 (1994). [CrossRef]
  11. D. A. Tulchinsky and K. J. Williams, "Excess amplitude and excess phase noise of RF photodiodes operated in compression," IEEE Photon. Technol. Lett. 17, 654-656 (2005). [CrossRef]
  12. M. Currie and I. Vurgaftman, "Microwave phase retardation in saturated InGaAs photodetectors," IEEE Photon. Technol. Lett. 18, 1433-1435 (2006). [CrossRef]
  13. Y. Liu, S.-G. Park, and A. M. Weiner, "Enhancement of narrow-band terahertz radiation from photoconducting antennas by optical pulse shaping," Opt. Lett. 21, 1762-1764 (1996). [CrossRef] [PubMed]
  14. S.-G. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, "High Power Narrow-Band Terahertz Generation Using Large Aperture Photoconductors," IEEE J. Quantum Electron. 35, 1257-1268 (1999). [CrossRef]
  15. J. Chou, Y. Han, and B. Jalali, "Adaptive RF-photonic arbitrary waveform generator," IEEE Photon. Technol. Lett. 15, 581-583 (2003). [CrossRef]
  16. I. S. Lin, J. D. McKinney, and A. M. Weiner, "Photonic synthesis of broadband microwave arbitrary waveforms applicable for ultra-wideband communication," IEEE Microwave Wirel. Compon. Lett. 15, 226-228 (2005). [CrossRef]
  17. J. D. McKinney and A. M. Weiner, "Compensation of the effects of antenna dispersion on UWB waveforms via optical pulse shaping techniques," IEEE Trans. Microwave Theory Tech. 54, 1681-1686 (2006). [CrossRef]
  18. T. Fortier, A. Bartels, and S. A. Diddams, "Octave-spanning Ti:sapphire laser with a repetition rate > 1 GHz for optical frequency measurements and comparisons," Opt. Lett. 31, 1011-1013 (2006). [CrossRef] [PubMed]
  19. D.A. Braje, M. S. Kirchner, S. Osterman, T. M. Fortier, and S. A. Diddams, "Astronomical spectrograph calibration with broad-spectrum frequency combs," Eur. J. Phys D 48, 57-66 (2008).
  20. Mention of specific products and trade names is for technical communication only and does not constitute an endorsement by NIST.
  21. T. Sizer, "Increase in laser repetition rate by spectral selection," IEEE J. Quantum Electron. 25, 97-103 (1989). [CrossRef]
  22. E. N. Ivanov, S. A. Diddams, and L. Hollberg, "Experimental study of noise properties of a Ti:sapphire femtosecond laser," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 355-360 (2003). [CrossRef]
  23. T. M. Niebauer, R. Schilling, K. Danzmann, A. Rüdiger, and W. Winkler, "Nonstationary shot noise and its effect on the sensitivity of interferometers," Phys. Rev. A 43, 5022-5029 (1991).
  24. P. J. Winzer, "Shot-noise formula for time-varying photon rates: a general derivation," J. Opt. Soc. Am. B 14, 2424-2429 (1997). [CrossRef]
  25. W. R. Bennett, Electrical Noise (Mc-Graw Hill New York, 1960), and references therein.
  26. F. Ma, S. Wang, and J. C. Campbell, "Shot noise suppression in avalanche photodiodes," Phys. Rev. Lett. 95, 176604 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited