OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 5 — Mar. 2, 2009
  • pp: 3500–3507

Enhanced spontaneous Raman scattering in silicon photonic crystal waveguides on insulator

Xavier Checoury, Moustafa El Kurdi, Zheng Han, and Philippe Boucaud  »View Author Affiliations

Optics Express, Vol. 17, Issue 5, pp. 3500-3507 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (537 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the spontaneous Raman scattering in a W1 photonic crystal waveguide on silicon-on-insulator where the lower silica cladding remains. Despite the vertical asymmetry that exists in such a waveguide, we numerically and experimentally show that the propagation losses at the pump and the Stokes wavelengths remain low enough to allow a significant exaltation of the spontaneous Raman scattering. In particular, we observe a reshaping of the Raman spectrum and a more than ten-fold enhancement of the Raman scattering efficiency in a W1 photonic crystal waveguide as compared to a single-mode ridge waveguide.

© 2009 Optical Society of America

OCIS Codes
(130.5296) Integrated optics : Photonic crystal waveguides
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: October 27, 2008
Revised Manuscript: December 12, 2008
Manuscript Accepted: December 15, 2008
Published: February 23, 2009

Xavier Checoury, Moustafa El Kurdi, Zheng Han, and Philippe Boucaud, "Enhanced spontaneous Raman scattering in silicon photonic crystal waveguides on insulator," Opt. Express 17, 3500-3507 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express 12, 5269-5273 (2004). [CrossRef] [PubMed]
  2. H. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005). [CrossRef] [PubMed]
  3. H. S. Rong, S. B. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, "A cascaded silicon Raman laser," Nature Photonics 2, 170-174 (2008). [CrossRef]
  4. J. I. Dadap, R. L. Espinola, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, "Spontaneous Raman scattering in ultrasmall silicon waveguides," Opt. Letters 29, 2755-2757 (2004). [CrossRef]
  5. R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, "Raman amplification in ultrasmall silicon-on-insulator wire waveguides," Opt. Express 12, 3713-3718 (2004). [CrossRef] [PubMed]
  6. S. Assefa and Y. A. Vlasov, "High-order dispersion in photonic crystal waveguides," Opt. Express 15, 17,562-17,569 (2007). [CrossRef]
  7. J. E. McMillan, X. D. Yang, N. C. Panoiu, R. M. Osgood, and C. W. Wong, "Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides," Opt. Lett. 31, 1235-1237 (2006). [CrossRef]
  8. K. Inoue, H. Oda, A. Yamanaka, N. Ikeda, H. Kawashima, Y. Sugimoto, and K. Asakawa, "Dramatic densityof-state enhancement of Raman scattering at the band edge in a one-dimensional photonic-crystal waveguide," Phys. Rev. A 78, 011805 (2008). [CrossRef]
  9. H. Oda and K. Inoue, "Observation of Raman scattering in GaAs photonic-crystal slab waveguides," Opt. Express 14, 6659-6667 (2006). [CrossRef] [PubMed]
  10. H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, "Light amplification by stimulated Raman scattering in AlGaAs-based photonic-crystal line-defect waveguides," Appl. Phys. Lett. 93, 051114 (2008). [CrossRef]
  11. J. McMillan, M. Yu, D.-L. Kwong and C. W. Wong "Demonstration of Enhanced Spontaneous Raman Scattering in Slow-Light Silicon Photonic Crystal Waveguides" Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (2008), paper QMI6.
  12. X. Checoury, P. Crozat, J. M. Lourtioz, C. Cuisin, E. Derouin, O. Drisse, F. Poigt, L. Legouezigou, O. Legouezigou, P. Pommereau, G. H. Duan, O. Gauthier-Lafaye, S. Bonnefont, D. Mulin, F. Lozes-Dupuy, and A. Talneau, "Single-mode in-gap emission of medium-width photonic crystal waveguides on InP substrate," Opt. Express 13, 6947-6955 (2005). [CrossRef] [PubMed]
  13. X. Checoury, P. Boucaud, J. M. Lourtioz, O. Gauthier-Lafaye, S. Bonnefont, D. Mulin, J. Valentin, F. Lozes-Dupuy, F. Pommereau, C. Cuisin, E. Derouin, O. Drisse, L. Legouezigou, F. Lelarge, F. Poingt, G. H. Duan, and A. Talneau, "1.5 μm room-temperature emission of square-lattice photonic-crystal waveguide lasers with a single line defect," Appl. Phys. Lett. 86 (2005). [CrossRef]
  14. Q. Lin, O. J. Painter, and G. P. Agrawal, "Nonlinear optical phenomena in silicon waveguides: Modeling and applications," Opt. Express 15, 16,604-16,644 (2007). [CrossRef]
  15. M. El Kurdi, X. Checoury, S. David, T. P. Ngo, N. Zerounian, P. Boucaud, O. Kermarrec, Y. Campidelli, and D. Bensahel, "Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source," Opt. Express 16, 8780-8791 (2008). [CrossRef] [PubMed]
  16. X. Li, P. Boucaud, X. Checoury, O. Kermarrec, Y. Campidelli, and D. Bensahel, "Probing photonic crystals on silicon-on-insulator with Ge/Si self-assembled islands as an internal source," J. Appl. Phys. 99, 023103 (2006). [CrossRef]
  17. S. David, M. El kurdi, P. Boucaud, A. Chelnokov, V. Le Thanh, D. Bouchier, and J. M. Lourtioz, "Twodimensional photonic crystals with Ge/Si self-assembled islands," Appl. Phys. Lett. 83, 2509-2511 (2003). [CrossRef]
  18. S. J. McNab, N. Moll, and Y. A. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express 11, 2927-2939 (2003). [CrossRef] [PubMed]
  19. M. Settle, M. Salib, A. Michaeli,T. F. Krauss, "Low loss silicon on insulator photonic crystal waveguides made by 193nm optical lithography," Opt. Express 14, 2440-2445 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited