OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 5 — Mar. 2, 2009
  • pp: 3543–3554

Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy

J. Neauport, P. Cormont, P. Legros, C. Ambard, and J. Destribats  »View Author Affiliations

Optics Express, Vol. 17, Issue 5, pp. 3543-3554 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (564 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report an experimental investigation of fluorescence confocal microscopy as a tool to measure subsurface damage on grinded fused silica optics. Confocal fluorescence microscopy was performed with an excitation at the wavelength of 405 nm on fixed abrasive diamond grinded fused silica samples. We detail the measured fluorescence spectrums and compare them to those of oil based coolants and grinding slurries. We evidence that oil based coolant used in diamond grinding induces a fluorescence that marks the subsurface damages and eases its observation. Such residual traces might also be involved in the laser damage process.

© 2009 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(140.3330) Lasers and laser optics : Laser damage
(160.2540) Materials : Fluorescent and luminescent materials
(220.5450) Optical design and fabrication : Polishing

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 15, 2008
Revised Manuscript: January 20, 2009
Manuscript Accepted: January 21, 2009
Published: February 23, 2009

J. Neauport, P. Cormont, P. Legros, C. Ambard, and J. Destribats, "Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy," Opt. Express 17, 3543-3554 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. L. André, "Status of the LMJ project," Proc. SPIE 3047, 38-42 (1996).
  2. W. H. Lowdermilk, "Status of the National Ignition Facility project," Proc. SPIE 3047, 16-37 (1996).
  3. S. G. Demos, M. Staggs, and M. R. Kozlowski, "Investigation of Processes Leading to Damage Growth in Optical Materials for Large-Aperture Lasers," Appl. Opt. 41, 3628-3633 (2002). [PubMed]
  4. H. Bercegol, P. Bouchut, L. Lamaignere, B. Le Garrec, and G. Raze, "The impact of laser damage on the lifetime of optical components in fusion lasers," Proc. SPIE 5273, 312-324 (2004).
  5. D. W. Camp et al., "Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces," Proc. SPIE 3244, 356-364 (1998).
  6. S. Papernov and A. W. Schmid, "Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulse-laser radiation," J. Appl. Phys. 92, 5720-5728 (2002).
  7. F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue "Study of UV laser interaction with gold nanoparticles embedded in silica," J. Appl. Phys. B 75, 803-815 (2002).
  8. J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J-C Birolleau, "Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm," Opt. Express 13, 10163-10171 (2005). [PubMed]
  9. F. Y. Genin, A. Salleo, T. V. Pistor, and L. L. Chase, "Role of light intensification by cracks in optical breakdown on surfaces," J. Opt. Soc. Am. A 1810, 2607-2616 (2001).
  10. M. D. Feit and A. M. Rubenchik, "Influence of subsurface cracks on laser induced surface damage," Proc. SPIE 5273, 264-272 (2004).
  11. A. Salleo, F. Y. Genin, J. M. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, "Laser-induced damage of fused silica at 355 nm initiated at scratches," Proc. SPIE 3244, 341-347 (1998).
  12. J. Neauport, P. Cormont, C. Ambard, and F. Pilon, "Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm," Opt. Commun. 281, 3802-3805 (2008).
  13. H. Bercegol, P. Grua, D. Hébert, and J. P. Morreeuw, "Progress in the understanding of fracture related damage of fused silica," Proc. SPIE 6720, 1-12 (2007).
  14. W. J. Rupp, "Mechanism of the diamond lapping process," Appl. Opt. 13, 1264-1269.
  15. P. Hed and D. F. Edwards, "Optical glass fabrication technology. 2: Relationship between surface roughness and subsurface damage," Appl. Opt. 26, 4677-4680 (1987). [PubMed]
  16. J. C. Randi, J. C. Lambropoulos, and S. D. Jacobs, "Subsurface damge in some single crystalline optical materials," Appl. Opt. 44, 2241-2249 (2005). [PubMed]
  17. T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, " Sub-surface mechanical damage distributions during grinding of fused silica," J. Non Cryst. Sol. 352,5601-5617 (2006).
  18. Z. Wang, Y. Wu, Y. Dai, and S. Li, "Subsurface damage distribution in the lapping process," Appl. Opt. 47, 1417-1426 (2008). [PubMed]
  19. Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, "Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses," J. Am. Ceram. Soc. 77, 3277-3280 (1994).
  20. O. Fahnle, T. Wons, T. Koch, E. Debruyne, S Meeder, M. Booij, and S. M. Braat, "iTIRM as a tool for qualifying polishing processes," Appl. Opt. 41, 4036-4038 (2002) [PubMed]
  21. A. Wuttig, J. Steinert, A. Duparre, and H. Truckenbrodt, "Surface roughness and subsurface damage charaacterization of fused silica substrates," Proc. SPIE 3739, 369-376 (1999).
  22. L. Nevot and P. Croce, "Sur l’étude des couches superficielles monoatomiques par reflexion rasante (spéculaire ou diffuse) de rayons X par la méthode de l’empilement sandwich," J. Appl. Cryst. 8, 304-314 (1975).
  23. LEICA TCS SP2 confocal microscope, http://www.leica-microsystems.com/products/tcs-sp2_key.
  24. J. A. Menapace, P. J. Davis, W. A. Steel, T. I. Suratwala, P. E. Miller, and L. L. Wong, "Utilization of magnetorheological finishing as a diagnostic tool for investigating 3D structure of fractures in fused silica," Proc. SPIE 5991, 201-213 (2005).
  25. S. G. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, "Characterization of laser induced damage sites in optical components", Opt. Express 10, 1444-1450 (2005).
  26. Mark R. Kozlowski, and Stavros G. Demos "Properties of modified silica detected within laser-induced damage sites," Proc. SPIE 4102 106-111 (2000).
  27. S. O. Kucheyev and S. G. Demos, "Optical defects produced in fused silica during laser-induced breakdown," Appl. Phys. Lett. 82, 3230-3232 (2003).
  28. P. Barritault, P. Bouchut, H. Bercegol, P. Chaton, and G. Ravel, "Fluorescence of mitigated laser damages in fused silica," Proc. SPIE 5647, 188-196 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (2861 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited