OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 5 — Mar. 2, 2009
  • pp: 3640–3650

Array-based optical nanolithography using optically trapped microlenses

Euan McLeod and Craig B. Arnold  »View Author Affiliations

Optics Express, Vol. 17, Issue 5, pp. 3640-3650 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (280 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Current demands on optical nanolithography require the ability to rapidly and cost-effectively write arbitrary patterns over large areas with sub-diffraction limit feature sizes. The challenge in accomplishing this with arrays of near-field probes is maintaining equal separations between the substrate and each probe, even over non-planar substrates. Here we demonstrate array-based laser nanolithography where each probe is a microsphere capable of fabricating 100 nm structures using 355 nm light when self-positioned near a surface by Bessel beam optical trapping. We achieve both a feature size uniformity and relative positioning accuracy better than 15 nm, which agrees well with our model. Further improvements are possible using higher power and/or narrower Bessel beam optical traps.

© 2009 Optical Society of America

OCIS Codes
(350.3390) Other areas of optics : Laser materials processing
(110.4235) Imaging systems : Nanolithography
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: January 2, 2009
Revised Manuscript: February 16, 2009
Manuscript Accepted: February 20, 2009
Published: February 24, 2009

Euan McLeod and Craig B. Arnold, "Array-based optical nanolithography using optically trapped microlenses," Opt. Express 17, 3640-3650 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical tweezers computational toolbox," J. Opt. A: Pure Appl. Opt. 9, S196-S203 (2007). [CrossRef]
  2. H. J. Munzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, "Local field enhancement effects for nanostructuring of surfaces," J. Microsc. 202, 129-135 (2001). [CrossRef] [PubMed]
  3. K. Piglmayer, R. Denk, and D. Bauerle, "Laser-induced surface patterning by means of microspheres," Appl. Phys. Lett. 80, 4693-4695 (2002). [CrossRef]
  4. Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, "Angle effect in laser nanopatterning with particle-mask," J. Appl. Phys. 96, 6845-6850 (2004). [CrossRef]
  5. W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, "Near-field laser parallel nanofabrication of arbitrary-shaped patterns," Appl. Phys. Lett. 90, 243101 (2007). [CrossRef]
  6. R. M. Langford, P. M. Nellen, J. Gierak, and Y. Fu, "Focused ion beam micro- and nanoengineering," MRS Bull. 32, 417-423 (2007). [CrossRef]
  7. A. Chimmalgi, C. P. Grigoropoulos, and K. Komvopoulos, "Surface nanostructuring by nano-femtosectond laserassisted scanning force microscopy," J. Appl. Phys. 97, 104319 (2005). [CrossRef]
  8. D. J. Hwang, A. Chimmalgi, and C. P. Grigoropoulos, "Ablation of thin metal films by short-pulsed lasers coupled through near-field scanning optical microscopy probes," J. Appl. Phys. 99, 044905 (2006). [CrossRef]
  9. M. A. Case, G. McLendon, Y. Hu, T. K. Vanderlick, and G. Scoles, "Using nanografting to achieve directed assembly of de novo designed metalloproteins on gold," Nano Lett. 3, 425-429 (2003). [CrossRef]
  10. Y. J. Chen, J. H. Hsu, and H. N. Lin, "Fabrication of metal nanowires by atomic force microscopy nanoscratching and lift-off process," Nanotechnology 16, 1112-1115 (2005). [CrossRef]
  11. J. S. Hyun, J.-S. Moon, J.-H. Park, J.W. Kim, Y. D. Kim, and J.-H. Boo, "Fabrication of near-field optical probes using advanced functional thin films for mems and nems applications," Mat. Sci. Eng.B-Solid 149, 292-298 (2008). [CrossRef]
  12. M. Lenczner and R. C. Smith, "A two-scale model for an array of afm’s cantilever in the static case," Math. Comput. Model. 46, 776-805 (2007). [CrossRef]
  13. F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, and C. A. Mirkin, "Polymer pen lithography," Science 321, 1658-1660 (2008). [CrossRef] [PubMed]
  14. J.-i. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, "Multiple-spot parallel processing for laser micronanofabrication," Appl. Phys. Lett. 86, 044102 (2005). [CrossRef]
  15. Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, "Ultrafast-laserinduced parallel phase-change nanolithography," Appl. Phys. Lett. 89, 041108 (2006). [CrossRef]
  16. E. McLeod and C. B. Arnold, "Subwavelength direct-write nanopatterning using optically trapped microspheres," Nature Nanotech. 3, 413-417 (2008). [CrossRef]
  17. J. Durnin, "Exact solutions for nondiffracting beams. i. the scalar theory," J. Opt. Soc. Am. A 4, 651-654 (1987). [CrossRef]
  18. D. McGloin and K. Dholakia, "Bessel beams: diffraction in a new light," Contemp. Phys. 46, 15-28 (2005). [CrossRef]
  19. V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002). [CrossRef] [PubMed]
  20. E. J. W. Verwey and J. T. G. Overbeek, Theory of the Stability of Lyophobic Colloids (Elsevier Publishing Company, Inc., 1948).
  21. J. Y. Walz and D. C. Prieve, "Prediction and measurement of the optical trapping forces on a microscopic dielectric sphere," Langmuir 8, 3073-3082 (1992). [CrossRef]
  22. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003). [CrossRef] [PubMed]
  23. M. Himmelbauer, E. Arenholz, D. Bauerle, and K. Schilcher, "Uv-laser-induced surface topology changes in polyimide," Appl. Phys. A 63, 337-339 (1996). [CrossRef]
  24. K. Piglmayer, E. Arenholz, C. Ortwein, N. Arnold, and D. Bauerle, "Single-pulse ultraviolet laser-induced surface modification and ablation of polyimide," Appl. Phys. Lett. 73, 847-849 (1998). [CrossRef]
  25. We have also performed this calculation using a more accurate Mie scattering model [1], however the error is less than 5% with our parameters and the added complexity obfuscates the physics behind the trapping.
  26. Y. Harada and T. Asakura, "Radiation forces on a dielectric sphere in the rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996). [CrossRef]
  27. E. McLeod and C. B. Arnold, "3d positioning accuracy of bessel beam surface traps balanced by electrostatic double-layer repulsion," in preparation.</other>

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited