OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 5 — Mar. 2, 2009
  • pp: 3673–3678

Cavity Ring-Down Absorption Spectrography based on filament-generated supercontinuum light

Kamil Stelmaszczyk, Philipp Rohwetter, Martin Fechner, Manuel Queißer, Adam CzySewski, Tadeusz Stacewicz, and Ludger Wöste  »View Author Affiliations

Optics Express, Vol. 17, Issue 5, pp. 3673-3678 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (418 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We performed simultaneous, multispectral CRDS measurements that for the first time use the Supercontinuum light source. We called this approach Supercontinuum Cavity Ring-Down Spectrography (SC CRDSpectrography) and successfully applied it to measuring the absorption spectrum of NO2 gas at a concentration of 2 ppm. The extrapolated sensitivity of our setup was much greater, about 5 ppb. The ppb sensitivity level is comparable to this obtainable with single wavelength dye-lasers based CRDS systems. It is, therefore, feasible to construct extremely broadband and sensitive CRDS devices basing on the SC CRDSpectrography scheme.

© 2009 Optical Society of America

OCIS Codes
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(260.5950) Physical optics : Self-focusing
(300.0300) Spectroscopy : Spectroscopy
(300.1030) Spectroscopy : Absorption
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:

Original Manuscript: January 13, 2009
Revised Manuscript: January 23, 2009
Manuscript Accepted: January 23, 2009
Published: February 24, 2009

Kamil Stelmaszczyk, Philipp Rohwetter, Martin Fechner, Manuel Queißer, Adam Czyzewski, Tadeusz Stacewicz, and Ludger Wöste, "Cavity Ring-Down Absorption Spectrography based on filament-generated supercontinuum light," Opt. Express 17, 3673-3678 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C.  Vallance, "Innovations in cavity ringdown spectroscopy," New J. Chem.  29, 867-874 (2005) [CrossRef]
  2. A. O’Keefe and D. A. G. Deacon, "Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources," Rev. Sci. Instrum. 59, 2544-2551 (1988) [CrossRef]
  3. R. Engeln and G. Meijer, "A Fourier transform cavity ring down spectrometer," Rev. Sci. Instrum. 67, 2708-2713 (1996) [CrossRef]
  4. J. J. Scherer, "Ringdown spectral photography," Chem. Phys. Lett. 292, 143-153 (1998) [CrossRef]
  5. S. M Ball, I. M Povey, E. G. Norton, and R. L Jones, "Broadband cavity ringdown spectroscopy of the NO3 radical," Chem. Phys. Lett. 342, 113-120 (2001) [CrossRef]
  6. A. Czyżewski, S. Chudzyński, K. Ernst, Ernest. Krasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, "Cavity ring-down spectrography," Opt. Commun. 191, 271-275 (2001) [CrossRef]
  7. S. E. Fiedler, A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids," Rev. Sci. Instrum. 76, 023107 (2005) [CrossRef]
  8. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, "Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection," Science 311, 1595-1599 (2006) [CrossRef] [PubMed]
  9. J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, "Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source," Opt. Express 16, 10178-10188 (2008) [CrossRef] [PubMed]
  10. A. Couairon and A. Mysyrowicz, "Femtosecond filamentation in transparent media," Phys. Rep. 441, 47-189 (2007) [CrossRef]
  11. K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyżewski, T. Stacewicz, and L. Wöste, "Towards Supercontinuum Cavity Ring-Down Spectroscopy," Appl. Phys. B DOI 10.1007/s00340-008-3320-z
  12. G. Berden, R. Peeters, and G. Meijer, "Cavity ring-down spectroscopy: Experimental schemes and applications," Int. Rev. in Phys. Chem. 19, 565-607 (2000) [CrossRef]
  13. K. Stelmaszczyk, A. Czyżewski, A. Szymański, A. Pietruczuk, S. Chudzyński, K. Ernst, and T. Stacewicz, "New method of elaboration of the lidar signal," Appl. Phys. B 70,295-299 (2000) [CrossRef]
  14. S. M. Ball and R. L. Jones, "Broad-Band Cavity Ring-Down Spectroscopy," Chem. Rev. 103, 5239-5262 (2003) [CrossRef] [PubMed]
  15. A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colin, S. Fally, M. F. Merienne, A. Jenouvrieri, and B. Coquart, "Measurements of the NO2, absorption cross-section from 42 000 cm-1 to 10 000 cm-1 (238-1000 nm) at 220 K and 294 K," J.Quant. Spectrosc. Radiat. Transfer 59, 171-184 (1998) [CrossRef]
  16. J. W. Harder, J. W. Brault, P. V. Johnston, and G. H. Mount, "Temperature dependent NO2 cross sections at high spectral resolution," J. Geophys. Res. 102, 3861-3879 (1996) [CrossRef]
  17. D. V. Land, A. P. Levick, and J. W. Hand, "The use of the Allan deviation for the measurement of the noise and drift performance of microwave radiometers," Meas. Sci. Technol. 18,1917-1982 (2007) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited