OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 5 — Mar. 2, 2009
  • pp: 3698–3706

Improving the recording ability of a near-field optical storage system by higher-order radially polarized beams

Yaoju Zhang and Jianping Bai  »View Author Affiliations


Optics Express, Vol. 17, Issue 5, pp. 3698-3706 (2009)
http://dx.doi.org/10.1364/OE.17.003698


View Full Text Article

Enhanced HTML    Acrobat PDF (282 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Distributions of the optical field in a solid immersion lens recording system are calculated for higher-order radially polarized modes of the incidence. Results show that two higher-order radially polarized modes of R-TEM11* and R-TEM21* are useful to near-field optical recording, but further higher-order modes such as R-TEM31*, R-TEM41*, and R-TEM51* are not useful due to the strong side-lobe intensity. Compared with R-TEM01* beam focusing, the full width at half-maximum of the recording spot is decreased markedly and the focal depth is increased substantially by using R-TEM11* beam focusing. The effect of the beam width of the R-TEM11* mode is also discussed.

© 2009 Optical Society of America

OCIS Codes
(260.1960) Physical optics : Diffraction theory
(180.4243) Microscopy : Near-field microscopy
(210.4245) Optical data storage : Near-field optical recording

ToC Category:
Optical Data Storage

History
Original Manuscript: September 8, 2008
Revised Manuscript: October 31, 2008
Manuscript Accepted: November 19, 2008
Published: February 24, 2009

Citation
Yaoju Zhang and Jianping Bai, "Improving the recording ability of a near-field optical storage system by higher-order radially polarized beams," Opt. Express 17, 3698-3706 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3698


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990). [CrossRef]
  2. B. D. Terris, H. J. Mamin, and D. Ruger, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994). [CrossRef]
  3. B. D. Terris, H. J. Mamin, and D. Rugar, "Near-field optical data storage," Appl. Phys. Lett. 68, 141-143 (1996). [CrossRef]
  4. I. Ichimura, S. Hayashi, and G. S. Kino, "High-density optical recording using a solid immersion lens," Appl. Opt. 36, 4339-4348 (1997). [CrossRef] [PubMed]
  5. Y. Zhang, "Theoretical study of near-field optical storage with a solid immersion lens," J. Opt. Soc. Am. A 23, 2132-2136 (2006). [CrossRef]
  6. L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Phys. Lett. 74, 501-503 (1999). [CrossRef]
  7. M. Yoshita, K. Koyama, M. Baba, and H. Akiyama, "Fourier imaging study of efficient near-field optical coupling in solid immersion fluorescence microscopy," J. Appl. Phys. 92, 862-865 (2002). [CrossRef]
  8. S. B. Ippolito, S. A. Thorne, M. G. Eraslan, B. B. Goldberg, M. S. Ünlü, and Y. Leblebici, "High spatial resolution subsurface thermal emission microscopy," Appl. Phys. Lett. 84, 4529-4531 (2004). [CrossRef]
  9. J. Zhang, C. W. See, and M. G. Somekh, "Imaging performance of wide-field solid immersion lens microscopy," Appl. Opt. 46, 4202-4208 (2007). [CrossRef] [PubMed]
  10. S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, "Theoretical analysis of numerical aperture increasing lens microscopy," J. Appl. Phys. 97, 053105 (2005). [CrossRef]
  11. Z. Liu, B. B. Goldberg, S. B. Ippolito, A. N. Vamivakas, M. S. Ünlü, and R. Mirin, "High-resolution, high-collection efficiency in numerical aperture increasing lens microscopy of individual quantum dots," Appl. Phys. Lett. 87, 071905 (2005). [CrossRef]
  12. G. Tessier, M. Bardoux, C. Boué, C. Filloy, and D. Fournier, "Back side thermal imaging of integrated circuits at high spatial resolution," Appl. Phys. Lett. 90, 171112 (2007). [CrossRef]
  13. H. Hatano, T. Sakata, K. Ogura, T. Hoshino, and H. Ueda, "Plano-convex solid immersion mirror with a small aperture for near-field optical data storage," Opt. Rev. 9, 66-69 (2002). [CrossRef]
  14. W. A. Challener, C. Mihalcea, C. Peng, and K. Pelhos, "Miniature planar solid immersion mirror with focused spot less than a quarter wavelength," Opt. Express 13, 7189-7197 (2005). [CrossRef] [PubMed]
  15. Y. Zhang, "Optical data storage system with a plano-ellipsoidal solid immersion mirror illuminated directly by a point light source," Appl. Opt. 45, 8653-8658 (2006). [CrossRef] [PubMed]
  16. Y. Zhang, "Optical intensity distribution of a plano-convex solid immersion mirror," J. Opt. Soc. Am. A 24, 211-214 (2007). [CrossRef]
  17. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. R. Soc. London Ser. A 253, 358-379 (1959). [CrossRef]
  18. P. Török, P. Varga, Z. Laczik, and G. R. Booker, "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation," J. Opt. Soc. Am. A 12, 325-332 (1995). [CrossRef]
  19. Y. Zhang, H. Xiao, and C. Zheng, "Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens," New J. Phys. 6, 75-14 (2004). [CrossRef]
  20. Y. Zhang, C. Zheng, and Y. Zou, "Focal-field distribution of the solid immersion lens system with an annular filter," Optik 115, 277-280 (2004). [CrossRef]
  21. Y. Zhang, "A new three-zone amplitude-only filter for increasing the focal depth of near-field solid immersion lens systems," J. Mod. Opt. 53, 1919-1925 (2006). [CrossRef]
  22. C. Liu and S.-H. Park, "Numerical analysis of an annular-aperture solid immersion lens," Opt. Lett. 29, 1742-1744 (2004). [CrossRef] [PubMed]
  23. Y. Zhang and X. Ye, "Three-zone phase-only filter increasing the focal depth of optical storage systems with a solid immersion lens," Appl. Phys. B 86, 97-103 (2007). [CrossRef]
  24. K. S. Youngworth and T. G. Brown, "Focusing of high numerical aperture cylindrical-vector beams," Opt. Express 7, 77-87 (2000). [CrossRef] [PubMed]
  25. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "The focus of light-theoretical calculation and experimental tomographic reconstruction," Appl. Phys. B 72, 109-113 (2001).
  26. R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003). [CrossRef] [PubMed]
  27. L. E. Helseth, "Roles of polarization, phase and amplitude in solid immersion lens systems," Opt. Commun. 191,161-172 (2001). [CrossRef]
  28. Y. Kozawa and S. Sato, "Focusing property of a double-ring-shaped radially polarized beam," Opt. Lett. 31, 820-822 (2006). [CrossRef] [PubMed]
  29. Y. Kozawa and S. Sato, "Sharper focal spot formed by higher-order radially polarized laser beams," J. Opt. Soc. Am. A 24, 1793-1798 (2007). [CrossRef]
  30. J. Hamazaki, A. Kawamoto, R. Morita, and T. Omatsu, "Direct production of high-power radially polarized output from a side-pumped Nd:YVO4 bounce amplifier using a photonic crystal mirror," Opt. Express 16, 10762-10768 (2008). [CrossRef] [PubMed]
  31. T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, "Polarization-selective grating mirrors used in the generation of radial polarization," Appl. Phys. B 80, 707-713 (2005). [CrossRef]
  32. Y. Kozawa and S. Sato, "Generation of a radially polarized laser beam by use of a conical Brewster prism," Opt. Lett. 30, 3063-3065 (2005). [CrossRef] [PubMed]
  33. R. H. Webb, "Confocal optical microscopy," Rep. Prog. Phys. 59, 427-471 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited