OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 5 — Mar. 2, 2009
  • pp: 3741–3753

Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS)

Ashwin Gopinath, Svetlana V. Boriskina, Bjorn M. Reinhard, and Luca Dal Negro  »View Author Affiliations


Optics Express, Vol. 17, Issue 5, pp. 3741-3753 (2009)
http://dx.doi.org/10.1364/OE.17.003741


View Full Text Article

Enhanced HTML    Acrobat PDF (610 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Deterministic Aperiodic (DA) arrays of gold (Au) nanoparticles are proposed as a novel approach for the engineering of reproducible surface enhanced Raman scattering (SERS) substrates. A set of DA and periodic arrays of cylindrical and triangular Au nanoparticles with diameters ranging between 50–110 nm and inter-particle separations between 25–100 nm were fabricated by e-beam lithography on quartz substrates. Using a molecular monolayer of pMA (p-mercaptoaniline) as a Raman reporter, we show that higher values of SERS enhancement factors can be achieved in DA structures compared to their periodic counterparts, and discuss the specific scaling rules of DA arrays with different morphologies. Electromagnetic field calculations based on the semi-analytical generalized Mie theory (GMT) fully support our findings and demonstrate the importance of morphology-dependent diffractive coupling (long-range interactions) for the engineering of the SERS response of DA arrays. Finally, we discuss optimization strategies based on the control of particles sizes and shapes, and we demonstrate that spatially-averaged SERS enhancement factors of the order of ~ 107 can be reproducibly obtained using DA arrays of Au nano-triangles. The ability to rigorously design lithographically fabricated DA arrays of metal nanoparticles enables the optimization and control of highly localized plasmonic fields for a variety of chip-scale devices, such as more reproducible SERS substrates, label-free bio-sensors and non-linear elements for nano-plasmonics.

© 2009 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(290.4020) Scattering : Mie theory
(050.6624) Diffraction and gratings : Subwavelength structures
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 13, 2009
Revised Manuscript: February 3, 2009
Manuscript Accepted: February 17, 2009
Published: February 25, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Ashwin Gopinath, Svetlana V. Boriskina, Björn M. Reinhard, and Luca Dal Negro, "Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS)," Opt. Express 17, 3741-3753 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3741


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57, 783-826 (1985). [CrossRef]
  2. K. A. Willets and R. P. Van Duyne, "Localized surface plasmon spectroscopy and sensing," Annu. Rev. Phys. Chem. 58, 267-297 (2007). [CrossRef]
  3. Eds. K. Kneipp, M. Moskovits, and H. Kneipp, Surface-Enhanced Raman Scattering (Springer, Berlin, 2006). [CrossRef]
  4. Y. W. C. Cao, R. C. Jin, and C. A. Mirkin, "Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection," Science,  297, 1536-1540 (2002). [CrossRef]
  5. I. Delfino, A. R. Bizzarri, and S. Cannistraro, "Single-molecule detection of yeast cytochrome c by surface-enhanced Raman spectroscopy," Biophys. Chem. 113, 41-51 (2005). [CrossRef]
  6. S. M. Nie and S. R. Emery, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science,  275, 1102-1106 (1997). [CrossRef]
  7. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997). [CrossRef]
  8. K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, and M. S. Feld, "Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS)," Phys. Rev. E 57, R6281-R6284 (1998). [CrossRef]
  9. D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. P. Wu, P. Nordlander, and D. Natelson, "Electro-migrated nanoscale gaps for surface-enhanced Raman spectroscopy," Nano Lett. 7, 1396-1400 (2007). [CrossRef] [PubMed]
  10. R. A. Tripp, R. A. Dluhy, and Y. Zhao, "Novel nanostructures for SERS biosensing," Nano Today 3, 31-37 (2008). [CrossRef]
  11. R. M. Jarvis, A. Brooker, and R. Goodacre, "Surface-enhanced Raman scattering for the rapid discrimination of bacteria," Faraday Discuss. 132, 281-292 (2006). [CrossRef] [PubMed]
  12. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrode," Chem. Phys. Lett. 26, 163-166 (1974). [CrossRef]
  13. D. L. Jeanmaire and R. P. Van Duyne, "Surface Raman spectroelectrochemistry Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," J. Electroanal. Chem. 84, 1-20 (1977). [CrossRef]
  14. C. V. Raman, "A change of wave-length in light scattering," Nature 121, 619-619 (1928). [CrossRef]
  15. M. Kerker, D.-S. Wang, and H. Chew, "Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles," Appl. Opt. 19, 3373-3388 (1980). [CrossRef] [PubMed]
  16. J. Gersten and A. Nitzan, "Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces." J. Chem. Phys. 73, 3023-3037 (1980). [CrossRef]
  17. F. J. García-Vidal and J. B. Pendry, "Collective theory for surface enhanced Raman scattering," Phys. Rev. Lett. 77, 1163-1166 (1996). [CrossRef] [PubMed]
  18. E. C. Le Ru and P. G. Etchegoin, "Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy," Chem. Phys. Lett. 423, 63-66 (2006). [CrossRef]
  19. H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000). [CrossRef]
  20. L. Gunnarsson, E.J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Kall, "Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering," Appl. Phys. Lett. 78, 802-804 (2001). [CrossRef]
  21. Y.-J. Liu, Z.-Y. Zhang, Q. Zhao, and Y.-P. Zhao, "Revisiting the separation dependent surface enhanced Raman scattering," Appl. Phys. Lett. 93, 173106 (2008). [CrossRef]
  22. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates," Nano Lett. 5, 1569-1574 (2005). [CrossRef] [PubMed]
  23. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005). [CrossRef] [PubMed]
  24. M. Moskovits, L. L. Tay, J. Yang, and T. Haslett, "SERS and the single molecule," Top. Appl. Phys. 82, 215-226 (2002). [CrossRef]
  25. A. Bek, R. Jansen, M. Ringler, S. Mayilo, T. A. Klar, and J. Feldmann, "Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches," Nano Lett. 8, 485-490 (2008). [CrossRef] [PubMed]
  26. R. G. Freeman, K. G. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, "Self-assembled metal colloid monolayers: an approach to SERS substrates," Science 267, 1629-1632 (1995). [CrossRef] [PubMed]
  27. S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, "Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates," J. Chem. Phys. 111, 4729-4735 (1999). [CrossRef]
  28. J. B. Jackson and N. J. Halas, "Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates," PNAS.  101, 17930-17935 (2004). [CrossRef] [PubMed]
  29. Y. Lu, G.L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, "Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect," Nano. Lett. 5, 119-124 (2005). [CrossRef] [PubMed]
  30. V. Shalaev, Optical Properties of Nanostructured Random Media (Springer-Verlag, 2002). [CrossRef]
  31. Z. Wang, S. Pan, T. D. Krauss, H. Du, and L. J. Rothberg, "The structural basis for giant enhancement enabling single-molecule Raman scattering," PNAS.  100, 8636-8643 (2003). [CrossRef]
  32. K. Li, M. I. Stockman, and D. J. Bergman, "Self-Similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402 (2003). [CrossRef] [PubMed]
  33. J. Dai, F. Cajko, I. Tsukerman, and M. I. Stockman, "Electrodynamic effects in plasmonic nanolenses," Phys. Rev. B 77, 115419 (2008). [CrossRef]
  34. V. M. Shalaev and M. I. Stockman, "Optical properties of fractal clusters (susceptibility, surface enhanced Raman scattering by impurities)," Sov. Phys. JETP. 65, 287-294 (1987).
  35. X. Zhang, C. R. Yonzon, M. A. Young, D. A. Stuart, and R. P. Van Duyne, "Surface-enhanced Raman spectroscopy biosensors: excitation spectroscopy for optimisation of substrates fabricated by nanosphere lithography," IEE Proc.-Nanobiotechnol. 152, 195-206 (2005). [CrossRef]
  36. H. Perry, A. Gopinath, D. L Kaplan, L. Dal Negro, and F. G. Omenetto, "Nano- and micropatterning of optically transparent, mechanically robust, biocompatible silk fibroin films," Advanced Mater. DOI: 10.1002/adma.200800011.
  37. A. Wokaun, J. G. Bergman, J. P. Heritage, A. M. Glass, P. F. Liao, and D. H. Olson, "Surface second-harmonic generation from metal island films and microlithographic structures," Phys. Rev. B 24, 849-856 (1981). [CrossRef]
  38. M. Kahl, E. Voges, S. Kostrewa, C. Vietz, and W. M. Hill, "Periodically structured metallic substrates for SERS," Sens. Actuators B. 51, 285-291 (1995). [CrossRef]
  39. L. Gunnarsson, S. Petronis, B. Kasemo, H. Xu, J. Bjerneld, and M. Käll, "Optimizing nanofabricated substrates for Surface Enhanced Raman Scattering," Nanostruct. Mater. 12, 783-788 (1999). [CrossRef]
  40. Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, "Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays," Nano Lett. 8, 1923-1928 (2008). [CrossRef] [PubMed]
  41. N. Felidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering," Phys. Rev. B,  65, 075419 (2002). [CrossRef]
  42. L. Dal Negro, N. N. Feng, and A. Gopinath, "Electromagnetic coupling and plasmon localization in deterministic aperiodic arrays," J. Opt. A: Pure Appl. Opt. 10, 064013 (2008). [CrossRef]
  43. A. Gopinath, S. V. Boriskina, N. N. Feng, B. M. Reinhard, and L. Dal Negro, "Photonic-plasmonic scattering resonances in determinsitic aperiodic structures," Nano Lett. 8, 2423-2431 (2008). [CrossRef] [PubMed]
  44. R. Dallapiccola, A. Gopinath, F. Stellacci, and L. Dal Negro, "Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles," Opt. Express 16, 5544-5555 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-8-5544. [CrossRef] [PubMed]
  45. Y. L. Xu, "Electromagnetic scattering by an aggregate of spheres," Appl. Opt. 34, 4573-4588 (1995). [CrossRef] [PubMed]
  46. B. Khlebtsov, A. Melnikov, V. Zharov, and N. Khlebtsov, "Absorption and scattering of light by a dimer of metal nanospheres: comparison of dipole and multipole approaches," Nanotechnol. 17, 1437-1445 (2006). [CrossRef]
  47. S. Enoch, R. Quidant, and G. Badenes, "Optical sensing based on plasmon coupling in nanoparticle arrays," Opt. Express. 12, 3422-3427 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-15-3422. [CrossRef] [PubMed]
  48. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance," Phys. Rev. Lett. 84, 4721-4724 (2000). [CrossRef] [PubMed]
  49. S. Zou and G. C. Schatz, Coupled plasmonic plasmon/photonic resonance effects in SERS in Surface-(Enhanced Raman Scattering Springer, 2006).
  50. N. Mohri, S. Matsushita, M. Inoue, and K. Yoshikawa, "Desorption of 4-Aminobenzenethiol bound to a gold surface," Langmuir. 14, 2343-2347 (1998). [CrossRef]
  51. D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, "Resonant field enhancements from metal nanoparticle arrays," Nano Lett. 4, 153-158 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited