OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 5 — Mar. 2, 2009
  • pp: 3754–3764

Frequency tunability of solid-core photonic crystal fibers filled with nanoparticle-doped liquid crystals

Lara Scolari, Sebastian Gauza, Haiqing Xianyu, Lei Zhai, Lars Eskildsen, Thomas Tanggaard Alkeskjold, Shin-Tson Wu, and Anders Bjarklev  »View Author Affiliations


Optics Express, Vol. 17, Issue 5, pp. 3754-3764 (2009)
http://dx.doi.org/10.1364/OE.17.003754


View Full Text Article

Enhanced HTML    Acrobat PDF (1050 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We infiltrate liquid crystals doped with BaTiO3 nanoparticles in a photonic crystal fiber and compare the measured transmission spectrum with the one achieved without dopant. New interesting features, such as frequency modulation response of the device and a transmission spectrum with tunable attenuation on the short wavelength side of the widest bandgap, suggest a potential application of this device as a tunable all-in-fiber gain equalization filter with an adjustable slope. The tunability of the device is achieved by varying the amplitude and the frequency of the applied external electric field. The threshold voltage for doped and undoped liquid crystals in a silica capillary and in a glass cell are also measured as a function of the frequency of the external electric field and the achieved results are compared.

© 2009 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(230.3720) Optical devices : Liquid-crystal devices
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Photonic Crystal Fibers

History
Original Manuscript: January 23, 2009
Revised Manuscript: February 21, 2009
Manuscript Accepted: February 23, 2009
Published: February 25, 2009

Citation
Lara Scolari, Sebastian Gauza, Haiqing Xianyu, Lei Zhai, Lars Eskildsen, Thomas T. Alkeskjold, Shin–Tson Wu, and Anders Bjarklev, "Frequency tunability of solid-core photonic crystal fibers filled with nanoparticle-doped liquid crystals," Opt. Express 17, 3754-3764 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3754


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. St. J. Russell, "Review: Photonic Crystal Fibers," Science 299, 358-362 (2003). [CrossRef] [PubMed]
  2. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic, Dordrecht, 2003). [CrossRef]
  3. N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, "Application of an ARROW model for designing tunable photonic devices," Opt. Express 12,1540-1550 (2004). [CrossRef] [PubMed]
  4. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, "Microstructured Optical Fiber Devices," Opt. Express 9,698-713 (2001). [CrossRef] [PubMed]
  5. C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, "Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber," Opt. Commun. 204,179-184 (2002). [CrossRef]
  6. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band gap fiber," Optical Fiber Communication Conference, 466-468 (2002).
  7. S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys. 43, 7634-7638 (2004). [CrossRef]
  8. S. T. Wu, Q. T. Zhang, and S. Marder, "High dielectric dopants for low voltage liquid crystal operation," Jpn. J. Appl. Phys. 37, L1254-L1256 (1998). [CrossRef]
  9. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11,2589-2596 (2003). [CrossRef] [PubMed]
  10. M.W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17,819-821 (2005). [CrossRef]
  11. L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Express 13,7483-7496 (2005). [CrossRef] [PubMed]
  12. F. Du, Y. Q. Lu, and S. T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85, 2181-2183 (2004). [CrossRef]
  13. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express 12,5857-5871 (2004). [CrossRef] [PubMed]
  14. L. Scolari, T. T. Alkeskjold, and A. Bjarklev, "Tunable Gaussian filter based on tapered liquid crystal photonic bandgap fibre," Electron. Lett. 42,1270-1271 (2006). [CrossRef]
  15. D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, "Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers," Opt. Express 15, 7901-7912 (2007). [CrossRef] [PubMed]
  16. D. Noordegraaf, L. Scolari, J. Lægsgaard, T. T. Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S. T. Wu, "Avoided-crossing-based liquid-crystal photonic-bandgap notch filter," Opt. Lett. 33,986-988 (2008). [CrossRef] [PubMed]
  17. T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics," Opto-Electronics Review 14,329-334, (2006). [CrossRef]
  18. T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, "Tunable highly birefringent solid-core photonic liquid crystal fibers," Opt. Quantum Electron. 39,1021-1032 (2007). [CrossRef]
  19. T. R. Wolinski, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, "Polarization effects in photonic liquid crystal fibers," Meas. Sci. Technol. 18,3061-3069 (2007). [CrossRef]
  20. D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis, "Tunable highly birefringent bandgap-guiding liquid crystal microstructured fibers," J. Lightwave Techol. 24,3427-3432 (2006). [CrossRef]
  21. C. J. Kiely, J. Fink, M. Brust, D. Bethell, and D. J. Schiffrin, "Spontaneous ordering of bimodal ensembles of nanoscopic gold nanoparticles," Nature 396, 444-446 (1998). [CrossRef]
  22. J. S. Bradley, "Clusters and Colloids: From Theory and Application," edited by G. Schmid, VCH, Weinheim, (1994).
  23. S. Kundu, M. Akimoto, I. Hirayama, M. Inoue, S. Kobayashi, and K. Takatoh, "Enhancement of contrast ratio by using ferroelectric nanoparticles in the alignment layer of liquid crystal display," Jpn. J. Appl. Phys. 47, 4751-4754 (2008). [CrossRef]
  24. M. Kaczmarek, O. Buchnev, and I. Nandhakumar, "Ferroelectric nanoparticles in low refractive index liquid crystals for strong electro-optic response," Appl. Phys. Lett. 92, 103307 (2008). [CrossRef]
  25. S. Kobayashi, T. Miyama, N. Nishida, Y. Sakai, H. Shiraki, Y. Shiraishi, and N. Toshima, "Dielectric spectroscopy of metal nanoparticle doped liquid crystal displays exhibiting frequency modulation response," J. Display Technology 2, 121-129 (2006). [CrossRef]
  26. Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, "Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles," App. Phys. Lett. 81, 147801, (2006).
  27. Y. Reznikov, O. Buchnev, O. Tereshchenko,V. Reshetnyak, A. Glushchenko, and J. West, "Ferroelectric nematic suspension," Appl. Phys. Lett. 82, 1917-1919, (2003). [CrossRef]
  28. F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. J. Sluckin and J. L. West, "Orientational coupling amplification in ferroelectric nematic colloids," Phys. Rev. Lett. 97, 147801, (2006). [CrossRef] [PubMed]
  29. V. G. Chigrinov, Liquid Crystal Devices (Artech-House, 1999).
  30. S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, "High birefringence isothiocyanato tolane liquid crystals," Jpn. J. Appl. Phys. Part 1 42, 3463-3466 (2003). [CrossRef]
  31. S. T. Wu, U. Efron, and L. D. Hess, "Birefringence measurements of liquid crystals," Appl. Opt. 23, 3911-3915 (1984).. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited