OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 5 — Mar. 2, 2009
  • pp: 3861–3877

In Vivo Functional Imaging of Intrinsic Scattering Changes in the Human Retina with High-speed Ultrahigh Resolution OCT

V. J. Srinivasan, Y. Chen, J. S. Duker, and J. G. Fujimoto  »View Author Affiliations


Optics Express, Vol. 17, Issue 5, pp. 3861-3877 (2009)
http://dx.doi.org/10.1364/OE.17.003861


View Full Text Article

Enhanced HTML    Acrobat PDF (1422 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Non-invasive methods of probing retinal function are of interest for the early detection of retinal disease. While retinal function is traditionally directly measured with the electroretinogram (ERG), recently functional optical imaging of the retina has been demonstrated. In this manuscript, stimulus-induced, intrinsic optical scattering changes in the human retina are measured in vivo with high-speed, ultrahigh resolution optical coherence tomography (OCT) operating at 50,000 axial scans per second and ~3.3 micron axial resolution. A stimulus and measurement protocol that enables measurement of functional OCT retinal signals is described. OCT signal changes in the photoreceptors are demonstrated. Two distinct responses having different temporal and spatial properties are reported. These results are discussed in the context of optical intrinsic signals measured previously in the retina by fundus imaging and scanning laser ophthalmoscopy. Finally, challenges associated with in vivo functional retinal imaging in human subjects are discussed.

© 2009 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(330.4300) Vision, color, and visual optics : Vision system - noninvasive assessment
(330.5310) Vision, color, and visual optics : Vision - photoreceptors
(330.5380) Vision, color, and visual optics : Physiology

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: September 11, 2008
Revised Manuscript: January 30, 2009
Manuscript Accepted: February 26, 2009
Published: February 27, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics

Citation
V. J. Srinivasan, Y. Chen, J. S. Duker, and J. G. Fujimoto, "In vivo functional imaging of intrinsic scattering changes in the human retina with high-speed ultrahigh resolution OCT," Opt. Express 17, 3861-3877 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3861


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Kondo, Y. Miyake, M. Horiguchi, S. Suzuki, and A. Tanikawa, "Clinical evaluation of multifocal electroretinogram," Invest. Opthamol. Visual Sci. 36, 2146-2150 (1995).
  2. Vaegan and G. Sanderson, "Absence of ganglion cell subcomponents in multifocal luminance electroretinograms," Aust. N. Z. J. Ophthalmol. 25Suppl 1, S87-90 (1997). [PubMed]
  3. T. A. Berninger and G. B. Arden, "The pattern electroretinogram," Eye 2Suppl, S257-283 (1988). [CrossRef] [PubMed]
  4. P. Mierdel, H. J. Zenker, and E. Marre, "The pattern ERG in glaucoma: effect of pattern reversal time," Int. Opthamol. 16, 211-214. (1992). [CrossRef]
  5. V. C. Greenstein, S. Seliger, V. Zemon, and R. Ritch, "Visual evoked potential assessment of the effects of glaucoma on visual subsystems," Vision Res. 38, 1901-1911. (1998). [CrossRef] [PubMed]
  6. M. T. Watts, P. A. Good, and E. C. O'Neill, "The flash stimulated VEP in the diagnosis of glaucoma," Eye 3, 732-737. (1989). [CrossRef] [PubMed]
  7. H. A. Baseler, E. E. Sutter, S. A. Klein, and T. Carney, "The topography of visual evoked response properties across the visual field," Electroencephalogr. Clin. Neurophysiol. 90, 65-81 (1994). [CrossRef] [PubMed]
  8. D. C. Hood and X. Zhang, "Multifocal ERG and VEP responses and visual fields: comparing disease-related changes," Doc. Ophthalmol. 100, 115-137 (2000). [CrossRef]
  9. A. I. Klistorner and S. L. Graham, "Early magnocellular loss in glaucoma demonstrated using the pseudorandomly stimulated flash visual evoked potential," J. Glaucoma 8, 140-148 (1999). [CrossRef] [PubMed]
  10. A. I. Klistorner, S. L. Graham, J. R. Grigg, and F. A. Billson, "Multifocal topographic visual evoked potential: improving objective detection of local visual field defects," Invest. Opthamol. Visual Sci. 39, 937-950 (1998).
  11. S. L. Graham and A. Klistorner, "The diagnostic significance of the multifocal pattern visual evoked potential in glaucoma," Curr. Opin. Ophthalmol. 10, 140-146. (1999). [CrossRef] [PubMed]
  12. D. C. Hood, X. Zhang, V. C. Greenstein, S. Kangovi, J. G. Odel, J. M. Liebmann, and R. Ritch, "An interocular comparison of the multifocal VEP: a possible technique for detecting local damage to the optic nerve," Invest. Opthamol. Visual Sci. 41, 1580-1587 (2000).
  13. S. L. Graham, A. I. Klistorner, J. R. Grigg, and F. A. Billson, "Objective VEP perimetry in glaucoma: asymmetry analysis to identify early deficits," J. Glaucoma 9, 10-19 (2000). [CrossRef] [PubMed]
  14. R. H. Kardon, P. A. Kirkali, and H. S. Thompson, "Automated pupil perimetry. Pupil field mapping in patients and normal subjects," Ophthalmology 98, 485-495; discussion 495-486 (1991). [PubMed]
  15. R. H. Kardon, "Pupil perimetry," Curr. Opin. Ophthalmol. 3, 565-570 (1992). [CrossRef] [PubMed]
  16. S. Hong, J. Narkiewicz, and R. H. Kardon, "Comparison of pupil perimetry and visual perimetry in normal eyes: decibel sensitivity and variability," Invest. Opthamol. Visual Sci. 42, 957-965 (2001).
  17. A. Grinvald, R. D. Frostig, E. Lieke, and R. Hildesheim, "Optical Imaging of Neuronal-Activity," Physiol Rev. 68, 1285-1366 (1988). [PubMed]
  18. A. Villringer and B. Chance, "Non-invasive optical spectroscopy and imaging of human brain function," Trends Neurosci. 20, 435-442 (1997). [CrossRef] [PubMed]
  19. K. Tsunoda, Y. Oguchi, G. Hanazono, and M. Tanifuji, "Mapping cone- and rod-induced retinal responsiveness in macaque retina by optical imaging," Invest. Opthamol. Visual Sci. 45, 3820-3826 (2004). [CrossRef]
  20. G. Hanazono, K. Tsunoda, K. Shinoda, K. Tsubota, Y. Miyake, and M. Tanifuji, "Intrinsic signal imaging in macaque retina reveals different types of flash-induced light reflectance changes of different origins," Invest. Opthamol. Visual Sci. 48, 2903-2912 (2007). [CrossRef]
  21. G. Hanazono, K. Tsunoda, Y. Kazato, K. Tsubota, and M. Tanifuji, "Evaluating Neural Activity of Retinal Ganglion Cells by Flash-evoked Intrinsic Signal Imaging in Macaque Retina," Invest. Opthamol. Visual Sci. (2008). [CrossRef]
  22. K. Inomata, K. Tsunoda, G. Hanazono, Y. Kazato, K. Shinoda, M. Yuzawa, M. Tanifuji, and Y. Miyake, "Distribution of retinal responses evoked by transscleral electrical stimulation detected by intrinsic signal imaging in macaque monkeys," Invest. Opthamol. Visual Sci. 49, 2193-2200 (2008). [CrossRef]
  23. D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, "Special report: Noninvasive multi-parameter functional optical imaging of the eye," Ophthalmic Surg. Lasers Imaging 36, 57-66 (2005). [PubMed]
  24. M. Crittin and C. E. Riva, "Functional imaging of the human papilla and peripapillary region based on flicker-induced reflectance changes," Neurosci. Lett. 360, 141-144 (2004). [CrossRef] [PubMed]
  25. M. D. Abramoff, Y. H. Kwon, D. Ts'o, P. Soliz, B. Zimmerman, J. Pokorny, and R. Kardon, "Visual stimulus-induced changes in human near-infrared fundus reflectance," Invest. Opthamol. Visual Sci. 47, 715-721 (2006). [CrossRef]
  26. X. C. Yao and J. S. George, "Near-infrared imaging of fast intrinsic optical responses in visible light-activated amphibian retina," J. Biomed. Opt. 11, 064030 (2006). [CrossRef]
  27. X. C. Yao and J. S. George, "Dynamic neuroimaging of retinal light responses using fast intrinsic optical signals," Neuroimage 33, 898-906 (2006). [CrossRef] [PubMed]
  28. X. C. Yao, A. Yamauchi, B. Perry, and J. S. George, "Rapid optical coherence tomography and recording functional scattering changes from activated frog retina," Appl. Opt. 44, 2019-2023 (2005). [CrossRef] [PubMed]
  29. R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. H. Gao, and D. T. Miller, "In vivo functional imaging of human cone photoreceptors," Opt. Exp. 15, 16141-16160 (2007). [CrossRef]
  30. K. Grieve and A. Roorda, "Intrinsic signals from human cone photoreceptors," Invest. Opthamol. Visual Sci. 49, 713-719 (2008). [CrossRef]
  31. K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, "Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography," Proc. Natl. Acad. Sci. U S A 103, 5066-5071 (2006). [CrossRef] [PubMed]
  32. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, "Measurement of Intraocular Distances by Backscattering Spectral Interferometry," Opt. Commun. 117, 43-48 (1995). [CrossRef]
  33. G. Häusler and M. W. Lindner, ""Coherence radar" and "spectral radar"-new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998). [CrossRef]
  34. V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, "In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography," Opt. Lett. 31, 2308-2310 (2006). [CrossRef] [PubMed]
  35. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002). [CrossRef] [PubMed]
  36. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). [CrossRef]
  37. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004). [CrossRef]
  38. V. J. Srinivasan, B. K. Monson, M. Wojtkowski, R. A. Bilonick, I. Gorczynska, R. Chen, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, "Characterization of outer retinal morphology with high-speed, ultrahigh-resolution optical coherence tomography," Invest. Opthamol. Visual Sci. 49, 1571-1579 (2008). [CrossRef]
  39. E. M. Anger, A. Unterhuber, B. Hermann, H. Sattmann, C. Schubert, J. E. Morgan, A. Cowey, P. K. Ahnelt, and W. Drexler, "Ultrahigh resolution optical coherence tomography of the monkey fovea. Identification of retinal sublayers by correlation with semithin histology sections," Exp. Eye Res. 78, 1117-1125 (2004). [CrossRef] [PubMed]
  40. M. Gloesmann, B. Hermann, C. Schubert, H. Sattmann, P. K. Ahnelt, and W. Drexler, "Histologic correlation of pig retina radial stratification with ultrahigh-resolution optical coherence tomography," Invest. Opthamol. Visual Sci. 44, 1696-1703 (2003). [CrossRef]
  41. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited