OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 5 — Mar. 2, 2009
  • pp: 3903–3912

Pyramid-shaped hyperlenses for three-dimensional subdiffraction optical imaging

Lin Chen and Guo Ping Wang  »View Author Affiliations


Optics Express, Vol. 17, Issue 5, pp. 3903-3912 (2009)
http://dx.doi.org/10.1364/OE.17.003903


View Full Text Article

Enhanced HTML    Acrobat PDF (627 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on the hyperbolic dispersion relation for a strongly anisotropic medium, we propose a kind of pyramid-shaped hyperlenses (PSHLs) consisting of multilayer of planar silver and dielectric films for three-dimensional (3D) subdiffraction imaging at optical wavelengths. Numerical simulations by using the finite difference time domain method demonstrate that the PSHLs can resolve eight point sources with nanoscale separations distributed in 3D domain (with different hexahedron structures). Our results imply the potential applications of the hyperlens in real-time biomolecular imaging, nanolithography, and sensing.

© 2009 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(160.1190) Materials : Anisotropic optical materials
(220.0220) Optical design and fabrication : Optical design and fabrication

ToC Category:
Imaging Systems

History
Original Manuscript: October 30, 2008
Revised Manuscript: January 16, 2009
Manuscript Accepted: January 16, 2009
Published: February 27, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Lin Chen and Guo Ping Wang, "Pyramid-shaped hyperlenses for three-dimensional subdiffraction optical imaging," Opt. Express 17, 3903-3912 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3903


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. A. Ash and G. Nicholls, "Super-resolution Aperture Scanning Microscope," Nature (London) 237, 510 (1972). [CrossRef]
  2. J. Koglin, U. C. Fischer, and H. Fuchs, "Material contrast in scanning near-field optical microscopy at 1-10 nm resolution," Phys. Rev. B 55, 7977 (1997). [CrossRef]
  3. J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett 85, 3966 (2000). [CrossRef] [PubMed]
  4. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534 (2005). [CrossRef] [PubMed]
  5. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-Field Microscopy Through a SiC Superlens," Science 313, 1595 (2006). [CrossRef] [PubMed]
  6. S. Durant, Z. Liu, J. Steele, and X. Zhang, "Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit," J. Opt. Soc. Am. B 23, 2383 (2006). [CrossRef]
  7. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Superlens," Nano Lett 7, 403 (2007). [CrossRef] [PubMed]
  8. Y. Xiong, Z. Liu, C. Sun, and X. Zhang, "Two-Dimensional Imaging by Far-Field Superlens at Visible Wavelengths," Nano Lett 7, 3360 (2007). [CrossRef] [PubMed]
  9. Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Optical Hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express 14, 8247 (2006). [CrossRef] [PubMed]
  10. A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Phys. Rev. B 74, 075103 (2006). [CrossRef]
  11. Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686 (2007). [CrossRef] [PubMed]
  12. Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Semiclassical theory of the hyperlens," J. Opt. Soc. Am 24, A52 (2007). [CrossRef]
  13. H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, "Development of optical hyperlens for imaging below the diffraction limit," Opt. Express 15,15886 (2007). [CrossRef] [PubMed]
  14. L. Chen, X. Y. Zhou, and G. P. Wang, "V-shaped metal-dielectric multilayers for far-field subdiffraction imaging," Appl. Phys B 92,127 (2008). [CrossRef]
  15. J. G. Hu, P. Wang, Y. H. Lu, H. Ming, C. C. Chen, and J. X. Chen, "Sub-diffraction-Limit Imaging in Optical Hyperlens," Chin. Phys. Lett. 25, 4439 (2008). [CrossRef]
  16. P. Ikonen, C. Simovski, and S. Tretyakov, P. Belov and Y. Hao, "Magnification of subwavelength field distributions at microwave frequencies using a wire medium slab operating in the canalization regime," Appl. Phys. Lett 91, 104102 (2007). [CrossRef]
  17. Y. Liu, G. Bartal, X. Zhang, "All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region," Opt. Express 16, 15439 (2008). [CrossRef] [PubMed]
  18. G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, "Guiding, Focusing, and Sensing on the Subwavelength Scale Using Metallic Wire Arrays," Phys. Rev. Lett. 99, 053903 (2007). [CrossRef] [PubMed]
  19. S. Feng and J. Elson, "Diffraction-suppressed high-resolution imaging through metallodielectric nanofilms," Opt. Express 14, 216 (2006). [CrossRef] [PubMed]
  20. D. Schurig and D. R. Smith, "Sub-diffraction imaging with compensating bilayers," New J. Phys 7, 162 (2005). [CrossRef]
  21. P. A. Belov and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime," Phys. Rev. B 73, 113110 (2006). [CrossRef]
  22. P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370 (1972). [CrossRef]
  23. J. R. Meyer-Arendt, Introduction to Classical and Modern Optics (second Edition), part. 2. pp. 208-211.
  24. M. Born and E. Wolf, Principles of Optics (6th edition, Pergamon, Oxford, 1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited