OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 5 — Mar. 2, 2009
  • pp: 3951–3963

A digital frequency ramping method for enhancing Doppler flow imaging in Fourier-domain optical coherence tomography

Zhijia Yuan, Z. C. Luo, H. G. Ren, C. W. Du, and Yingtian Pan  »View Author Affiliations


Optics Express, Vol. 17, Issue 5, pp. 3951-3963 (2009)
http://dx.doi.org/10.1364/OE.17.003951


View Full Text Article

Enhanced HTML    Acrobat PDF (636 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A digital frequency ramping method (DFRM) is proposed to improve the signal-to-noise ratio (SNR) of Doppler flow imaging in Fourier -domain optical coherence tomography (FDOCT). To examine the efficacy of DFRM for enhancing flow detection, computer simulation and tissue phantom study were conducted for phase noise reduction and flow quantification. In addition, the utility of this technique was validated in our in vivo clinical bladder imaging with endoscopic FDOCT. The Doppler flow images reconstructed by DFRM were compared with the counterparts by traditional Doppler FDOCT. The results demonstrate that DFRM enables real-time Doppler FDOCT imaging at significantly enhanced sensitivity without hardware modification, thus rendering it uniquely suitable for endoscopic subsurface blood flow imaging and diagnosis.

© 2009 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.5070) Image processing : Phase retrieval
(110.4500) Imaging systems : Optical coherence tomography

ToC Category:
Imaging Systems

History
Original Manuscript: December 2, 2008
Revised Manuscript: February 6, 2009
Manuscript Accepted: February 11, 2009
Published: February 27, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Zhijia Yuan, Z. C. Luo, H. G. Ren, C. W. Du, and Yingtian Pan, "A digital frequency ramping method for enhancing doppler flow imaging in Fourier-domain optical coherence tomography," Opt. Express 17, 3951-3963 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3951


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003). [CrossRef]
  3. G. Haeusler, and M. W. Lindner, "Coherence radar and spectral radar—new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998). [CrossRef]
  4. Y. T. Pan, Z. L. Wu, Z. J. Yuan, Z. G. Wang, and C. W. Du, "Subcellular imaging of epithelium with time-lapse optical coherence tomography," J. Biomed. Opt. 12, - (2007). [CrossRef] [PubMed]
  5. W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999). [CrossRef]
  6. Z. G. Wang, C. S. D. Lee, W. C. Waltzer, J. X. Liu, H. K. Xie, Z. J. Yuan, and Y. T. Pan, "In vivo bladder imaging with microelectromechanical systems-based endoscopic spectral domain optical coherence tomography," J. Biomed. Opt. 12, - (2007). [CrossRef] [PubMed]
  7. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997). [CrossRef] [PubMed]
  8. P. H. Tran, D. S. Mukai, M. Brenner, and Z. P. Chen, "In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe," Opt. Lett. 29, 1236-1238 (2004). [CrossRef] [PubMed]
  9. U. Seitz, "In vivo endoscopic optical coherence tomography of esophagitis, Barrett's esophagus, and adenocarcinoma of the esophagus," Endoscopy 51, Ab94-Ab94 (2000).
  10. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11, 3490-3497 (2003). [CrossRef] [PubMed]
  11. Z. P. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. vanGemert, and J. S. Nelson, "Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography," Opt. Lett. 22, 1119-1121 (1997). [CrossRef] [PubMed]
  12. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-3121 (2003). [CrossRef] [PubMed]
  13. J. K. Barton, A. J. Welch, and J. A. Izatt, "Investigating pulsed dye laser-blood vessel interaction with color Doppler optical coherence tomography," Opt. Express 3, 251-256 (1998). [CrossRef] [PubMed]
  14. Y. H. Zhao, Z. P. Chen, C. Saxer, S. H. Xiang, J. F. de Boer, and J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114-116 (2000). [CrossRef]
  15. R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, "Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography," J. Biomed. Opt. 12, - (2007). [CrossRef] [PubMed]
  16. Y. C. Ahn, W. Jung, and Z. P. Chen, "Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography," Opt. Lett. 32, 1587-1589 (2007). [CrossRef] [PubMed]
  17. R. K. K. Wang, and Z. H. Ma, "Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography," Opt. Lett. 31, 3001-3003 (2006). [CrossRef] [PubMed]
  18. Y. L. Chen, P. Willett, and Q. Zhu, "Frequency tracking in optical Doppler tomography using an adaptive notch filter," J. Biomed. Opt. 12 (2007). [CrossRef] [PubMed]
  19. H. W. Ren and X. D. Li, "Clutter rejection filters for optical Doppler tomography," Opt. Express 14, 6103-6112 (2006). [CrossRef] [PubMed]
  20. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, "Three dimensional optical angiography," Opt. Express 15, 4083-4097 (2007). [CrossRef] [PubMed]
  21. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, "Flow velocity estimation using joint Spectral and Time Domain Optical Coherence Tomography," Opt. Express 16, 6008-6025 (2008). [CrossRef] [PubMed]
  22. Z. G. Wang, Z. J. Yuan, H. Y. Wang, and Y. T. Pan, "Increasing the imaging depth of spectral-domain OCT by using interpixel shift technique," Opt. Express 14, 7014-7023 (2006). [CrossRef] [PubMed]
  23. Y. K. Tao, A. M. Davis, and J. A. Izatt, "Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform," Opt. Express 16, 12350-12361 (2008). [CrossRef] [PubMed]
  24. R. K. K. Wang, and S. Hurst, "Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 mu m wavelength," Opt. Express 15, 11402-11412 (2007). [CrossRef] [PubMed]
  25. L. An and R. K. K. Wang, "In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography," Opt. Express 16, 11438-11452 (2008). [CrossRef] [PubMed]
  26. C. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, "Spectral resolution and sampling issues in Fourier-transform spectral interferometry," J. Opt. Soc. Am. B 17, 1795-1802 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited