OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 5 — Mar. 2, 2009
  • pp: 4074–4083

Retinal tumor imaging and volume quantification in mouse model using spectraldomain optical coherence tomography

Marco Ruggeri, Gavriil Tsechpenakis, Shuliang Jiao, Maria Elena Jockovich, Colleen Cebulla, Eleut Hernandez, Timothy G. Murray, and Carmen A. Puliafito  »View Author Affiliations

Optics Express, Vol. 17, Issue 5, pp. 4074-4083 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (2601 KB) ISP Components
Browse Datasets: MIDAS Click for help

Full-Text PDF contains links to datasets. See ISP homepage for software requirements and other information.

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have successfully imaged the retinal tumor in a mouse model using an ultra-high resolution spectral-domain optical coherence tomography (SD-OCT) designed for small animal retinal imaging. For segmentation of the tumor boundaries and calculation of the tumor volume, we developed a novel segmentation algorithm. The algorithm is based on parametric deformable models (active contours) and is driven by machine learning-based region classification, namely a Conditional Random Field. With this algorithm we are able to obtain the tumor boundaries automatically, while the user can specify additional constraints (points on the boundary) to correct the segmentation result, if needed. The system and algorithm were successfully applied to studies on retinal tumor progression and monitoring treatment effects quantitatively in a mouse model of retinoblastoma.

© 2009 Optical Society of America

OCIS Codes
(100.2960) Image processing : Image analysis
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine

ToC Category:
OCT in Retinal Disease

Original Manuscript: October 30, 2008
Revised Manuscript: January 26, 2009
Manuscript Accepted: February 21, 2009
Published: March 2, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics
Interactive Science Publishing Focus Issue: Optical Coherence Tomography (OCT) (2009) Optics Express

Marco Ruggeri, Gavriil Tsechpenakis, Shuliang Jiao, Maria Elena Jockovich, Colleen Cebulla, Eleut Hernandez, Timothy G. Murray, and Carmen A. Puliafito, "Retinal tumor imaging and volume quantification in mouse model using spectral-domain optical coherence tomography," Opt. Express 17, 4074-4083 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Pendergrass and S. Davis, "Incidence of retinoblastoma in the United States," Archives Ophthalmology 98, 1204-1210 (1980).
  2. Tamboli, M. J. Podgor, and J. W. Horm, "The incidence of retinoblastoma in the United States: 1974 through 1985," Archives Ophthalmology 108, 128-132 (1990).
  3. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  4. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995). [CrossRef]
  5. Q. Li, A. M. Timmers, K. Hunter, C. Gonzalez-Pola, A. S. Lewin, D. H. Reitze, W. W. Hauswirth, "Noninvasive imaging by optical coherence tomography to monitor Retinal Degeneration in the mouse," Investigative Ophthal.Visual Scie. 42, 2981-2989 (2001).
  6. N. Horio, S. Kachi, K. Hori, Y. Okamoto, E. Yamamoto, H. Terasaki, and Y. Miyake, "Progressive change of optical coherence tomography scans in retinal degeneration slow mice," Archives Ophthalmology 119,1329-1332 (2001).
  7. Hartl, T. Ko, R. K. Ghanta, W. Drexler, A. Clermont, S. E. Bursell, and J. G. Fujimoto, "In vivo ultrahigh resolution optical coherence tomography for the quantification of retinal structure in normal and transgenic mice," Invest. Ophthalmol. Visual Sci. 42, S793, 2001 (ARVO Abstract #4252).
  8. S. M. Shah, E. L. e Silva, Y. Salshin, S. F. Hackett, F. Woreta, and P. A. Campochiaro, "Comparison of retinal thickness of mice retina with stratus OCT and histology," ARVO Abstract #2375, Fort Lauderdale (2004).
  9. K. Kim, G. N. Maguluri, M. Puorishaag, Y. Umino, R. B. Barlow, and J. F. De Boer, "Optical coherence tomography for mouse retinal imaging," ARVO Abstract #2923, Fort Lauderdale (2006).
  10. V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, "Noninvasive volumetric Imaging and morphometry of the rodent retina with high-speed, ultra high-resolution optical coherence tomography," Invest. Ophthalmol. Visual Sci. 47, 5522-5528 (2006). [CrossRef]
  11. M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C.A. Puliafito, "In Vivo Three-Dimensional High-Resolution Imaging of Rodent Retina with Spectral-Domain Optical Coherence Tomography" Invest. Ophthalmol. Visual Sci. 48, 1808-1814 (2007). [CrossRef]
  12. N. L. Hawes, R.S. Smith, B. Chang, M. Davisson, J. R. Heckenlively, and S. W. M. John, "Mouse fundus photography and angiography: a catalogue of normal and mutant phenotypes," Mol Vis. 5, 22-29 (1999). [PubMed]
  13. E. Cohan, A. C. Pearch, P. T. Jokelainen, and D. F. Bohr, "Optic disc imaging in conscious rats and mice," Invest. Ophthalmol. Visual Scie. 44, 2560-2562 (2003).
  14. S. Remtulla and P. E. Hallett, "A schematic eye for the mouse, and comparisons with the rat," Vision Research 25, 21-31 (1985). [CrossRef] [PubMed]
  15. J. J. Windle, D. M. Albert, and J. M. O'Brien, "Retinoblastoma in transgenic mice," Nature 343, 665-669 (1990). [CrossRef] [PubMed]
  16. Y. Saishin, Y. Saishin, K. Takahashi, M. Melia, S. A. Vinores, and P. A. Campochiaro, "Inhibition of protein kinase c decreases prostaglandin-induced breakdown of the bloodretinal barrier," J. Cell. Physiol. 195, 210-219 (2003). [CrossRef] [PubMed]
  17. C. M. Cebulla, M. E. Jockovich, H. Boutrid, Y. Piña, M. Ruggeri, S. Jiao, S. K. Bhattacharya, W. J. Feuer, and T. G. Murray, "Lack of Effect of SU1498, an Inhibitor of Vascular Endothelial Growth Factor Receptor-2, in a Transgenic Murine Model of Retinoblastoma," The Open Ophthalmology Journal 2, 65-70 (2008). [CrossRef]
  18. S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, "Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography," Opt. Express 13,444-452 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-2-444. [CrossRef] [PubMed]
  19. G. Tsechpenakis and J. Wang, "CRF-based Segmentation of Human Tear Meniscus Obtained with Optical Coherence Tomography," in Proc. IEEE Int’l Conf. on Image Processing, San Antonio, TX, September 2007.
  20. G. Tsechpenakis, and D. Metaxas, "CRF-driven Implicit Deformable Model," in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Minneapolis, MN, June 2007.
  21. G. Tsechpenakis, J. Wang, B. Mayer, and D. Metaxas, "Coupling CRFs and Deformable Models for 3D Medical Image Segmentation," in Proc. IEEE Mathematical Methods in Biomedical Image Analysis, IEEE Int’l Conf. on Computer Vision, Rio de Janeiro, Brazil, Oct. 2007.
  22. G. Tsechpenakis, B. Lujan, O. Martinez, G. Gregori, and P. J. Rosenfeld, "Geometric Deformable Model Driven by CoCRFs: Application to Optical Coherence Tomography," in Proc. 11th Int'l Conf. on Medical Image Computing and Computer Assisted Intervention, New York City, NY, Sept. 2008.
  23. O. Martinez and G. Tsechpenakis, "Integration of Active Learning in a Collaborative CRF," in Proc. IEEE Online Learning for Classification, IEEE Conf. on Computer Vision and Pattern Recognition, Anchorage, AK, Jun. 2008. [PubMed]
  24. M. Kass, A. Witkin, and D. Terzopoulos, "Snakes: Active contour models," International Journal of Computer Vision 1, 321-331 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited