OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 5 — Mar. 2, 2009
  • pp: 4208–4220

Visualization of 3D high speed ultrahigh resolution optical coherence tomographic data identifies structures visible in 2D frames

Larry Kagemann, Hiroshi Isikawa, Gadi Wollstein, Michelle Gabriele, and Joel S. Schuman  »View Author Affiliations


Optics Express, Vol. 17, Issue 5, pp. 4208-4220 (2009)
http://dx.doi.org/10.1364/OE.17.004208


View Full Text Article

Enhanced HTML    Acrobat PDF (1949 KB) ISP Components
Browse Datasets: MIDAS Click for help

Full-Text PDF contains links to datasets. See ISP homepage for software requirements and other information.





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical coherence tomography has allowed unprecedented visualization of ocular structures, but the identity of some visible objects within slices remains unknown. This study reconstructs a number of those objects in 3D space, allowing their identification by observation of their 3D morphology. In the case mottling deep within image slices through the optic disc, C-mode imaging provided visualization of the appearance and distribution of laminar pores. In the case of white spots and streaks sometimes observed in image slices through the cornea, C-mode imaging contoured to the path of those white spots allowed their visual identification as nerves extending radially into the cornea from the limbus. White spots observed in ultrahigh resolution retinal image slices were identified as blood within retinal capillaries. C-mode contour-corrected imaging of three-dimensional structures provided the identification of previously unidentified structures visible in cross-sectional image slices.

© 2009 Optical Society of America

OCIS Codes
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy

ToC Category:
Visualization and Image Processing in OCT

History
Original Manuscript: November 20, 2008
Revised Manuscript: December 22, 2008
Manuscript Accepted: January 14, 2009
Published: March 2, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics
Interactive Science Publishing Focus Issue: Optical Coherence Tomography (OCT) (2009) Optics Express

Citation
Larry Kagemann, Hiroshi Ishikawa, Gadi Wollstein, Michelle Gabriele, and Joel S. Schuman, "Visualization of 3-D high speed ultrahigh resolution optical coherence tomographic data identifies structures visible in 2D frames," Opt. Express 17, 4208-4220 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-4208


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito,  et al., "Optical coherence tomography," Science 254, 1178 (1991). [CrossRef] [PubMed]
  2. D. Huang, J. Wang, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, "Micron-resolution ranging of cornea anterior chamber by optical reflectometry," Lasers Surg. Med. 11, 419 (1991). [CrossRef] [PubMed]
  3. A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, "In vivo optical coherence tomography," Am. J. Ophthalmol. 116, 113 (1993). [PubMed]
  4. C. K. Hitzenberger, W. Drexler, C. Dolezal, F. Skorpik, M. Juchem, A. F. Fercher, and H. D. Gnad, "Measurement of the axial length of cataract eyes by laser Doppler interferometry," Invest. Ophthalmol. Vis. Sci. 34, 1886 (1993). [PubMed]
  5. U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 25, 111 (2000). [CrossRef]
  6. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43 (1995). [CrossRef]
  7. G. Häusler and M. W. Linder, "Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21 (1998). [CrossRef]
  8. J. F. de Boer, B. Cense, B. Hyle Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067 (2003). [CrossRef] [PubMed]
  9. R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889 (2003). [CrossRef] [PubMed]
  10. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480 (2004). [CrossRef] [PubMed]
  11. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457 (2002). [CrossRef] [PubMed]
  12. A. G. Podoleanu, G. M. Dobre, D. J. Webb, and D. A. Jackson, "En-face OCT imaging of the retina using path modulation introduced by the transversal scanning mirror," in Advances in Optical Imaging and Photon Migration, J. Fujimoto and M. Patterson eds., Vol. 21 of OSA Trends in Optics and Photonics (Optical Society of America, 1998), paper AMC4.
  13. M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, "Transversal phase resolved polarization sensitive optical coherence tomography," Phys. Med. Biol. 49, 1257 (2004). [CrossRef] [PubMed]
  14. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, "Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second," Opt. Express 16, 15149 (2008). [CrossRef] [PubMed]
  15. V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head," Invest. Ophthalmol. Vis. Sci. 49, 5103 (2008). [CrossRef] [PubMed]
  16. B. Cense, T. C. Chen, N. Nassif, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultra-high speed and ultra-high resolution spectral-domain optical coherence tomography and optical Doppler tomography in ophthalmology," Bull. Soc. Belge Ophtalmol.123 (2006).
  17. Y. Hong, S. Makita, M. Yamanari, M. Miura, S. Kim, T. Yatagai, and Y. Yasuno, "Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography," Opt. Express 15, 7538 (2007). [CrossRef] [PubMed]
  18. E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, "In vivo optical frequency domain imaging of human retina and choroid," Opt. Express 14, 4403 (2006). [CrossRef] [PubMed]
  19. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121 (2007). [CrossRef] [PubMed]
  20. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Motion artifacts in optical coherence tomography with frequency-domain ranging," Opt. Express 12, 2977 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited