OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 6 — Mar. 16, 2009
  • pp: 4289–4294

Simultaneous optical parametric oscillation and intracavity second-harmonic generation based on a hexagonally poled lithium tantalate

P. Xu, J. F. Wang, C. Li, Z. D. Xie, X. J. Lv, H. Y. Leng, J. S. Zhao, and S. N. Zhu  »View Author Affiliations


Optics Express, Vol. 17, Issue 6, pp. 4289-4294 (2009)
http://dx.doi.org/10.1364/OE.17.004289


View Full Text Article

Enhanced HTML    Acrobat PDF (331 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Simultaneous optical parametric oscillation and intracavity second-harmonic generation based on a hexagonally poled lithium tantalate is reported. Both the optical parametric oscillation and the cascaded noncollinear second-order harmonic generation processes reach a high efficiency. A variety of possible self-doubling optical parametric oscillation processes indicate this hexagonally poled lithium tantalate has potential applications as a compact multi-wavelength light source.

© 2009 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(160.4330) Materials : Nonlinear optical materials
(190.2620) Nonlinear optics : Harmonic generation and mixing

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: December 10, 2008
Revised Manuscript: January 10, 2009
Manuscript Accepted: January 29, 2009
Published: March 3, 2009

Citation
P. Xu, J. F. Wang, C. Li, Z. D. Xie, X. J. Lv, H. Y. Leng, J. S. Zhao, and S. N. Zhu, "Simultaneous optical parametric oscillation and intracavity second-harmonic generation based on a hexagonally poled lithium tantalate," Opt. Express 17, 4289-4294 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-6-4289


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Andrews, H. Rabin, and C. L. Tang, "Coupled parametric downconversion and upconversion with simultaneous phase matching," Phys. Rev. Lett. 25, 605-608 (1970). [CrossRef]
  2. J. M. Yarborough and E. O. Ammann, "Simultaneous Optical Parametric Oscillation, Second Harmonic Generation, and Difference Frequency Generation," Appl. Phys. Lett. 18, 145-147 (1971). [CrossRef]
  3. V. Petrov and F. Noack, "Frequency upconversion of tunable femtosecond pulses by parametric amplification and sum-frequency generation in a single nonlinear crystal," Opt. Lett. 20, 2171-2173 (1995). [CrossRef] [PubMed]
  4. T. Kartaloğlu, K. G. Köprülü, and O. Aytür, "Phase-matched self-doubling optical parametric oscillator," Opt. Lett. 22, 280-282 (1997). [CrossRef]
  5. K. G. Köprülü, T. Kartaloğlu, Y. Dikmelik, and O. Aytür, "Single-crystal sum-frequency-generating optical parametric oscillator," J. Opt. Soc. Am. B 16, 1546-1552 (1999). [CrossRef]
  6. E. C. Cheung, K. Koch, and G. T. Moore, "Frequency upconversion by phase-matched sum-frequency generation in an optical parametric oscillator," Opt. Lett. 19, 1967-1969 (1994). [CrossRef] [PubMed]
  7. R. J. Ellingson and C. L. Tang, "High-power, high-repetition-rate femtosecond pulses tunable in the visible," Opt. Lett. 18, 438-440 (1993). [CrossRef] [PubMed]
  8. C. McGowan, D. T. Reid, Z. E. Penman, M. Ebrahimzadeh, W. Sibbett, and D. H. Jundt, "Femtosecond optical parametric oscillator based on periodically poled lithium niobate," J. Opt. Soc. Am. B 15, 694-701 (1998). [CrossRef]
  9. X. P. Zhang, J. Hebling, J. Kuhl, W. W. Rühle, and H. Giessen, "Efficient intracavity generation of visible pulses in a femtosecond near-infrared optical parametric oscillator," Opt. Lett. 26, 2005-2007 (2001). [CrossRef]
  10. W. R. Bosenberg, J. I. Alexander, L. E. Myers, and R. W. Wallace, "2.5-W, continuous-wave, 629-nm solid-state laser source," Opt. Lett. 23, 207-209 (1998). [CrossRef]
  11. K. F. Kashi, A. Arie, P. Urenski, and G. Rosenman, "Multiple nonlinear optical interactions with arbitrary wave vector differences," Phys. Rev. Lett. 88, 023903 (2002). [CrossRef]
  12. Z. D. Gao, S.Y. Tu, S.N. Zhu, and A. H. Kung,"Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically-poled stoichiometric lithium tantalate," Appl. Phys. Lett. 89, 181101 (2006). [CrossRef]
  13. T. Kartaloğlu, Z. G. Figen, and O. Aytür, "Simultaneous phase matching of optical parametric oscillation and second harmonic generation in aperiodically poled lithium niobate," J. Opt. Soc. Am. B 20, 343-350 (2003) [CrossRef]
  14. S. N. Zhu, Y. Y. Zhu, N. B. Ming, "Quasi-Phase-Matched Third-Harmonic Generation in a Quasi-Periodic Optical Superlattice," Science 278, 843-846 (1997). [CrossRef]
  15. H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang. Y. Y. Zhu, N. B. Ming, and J. L. He, "530-mW quasi-white-light generation using all-solid-state laser technique," J. Appl. Phys. 96, 7756-7758 (2004). [CrossRef]
  16. V. Berger, "Nonlinear Photonic Crystals," Phys. Rev. Lett. 81, 4136-4139 (1998). [CrossRef]
  17. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, "HeXLN: a 2-dimensional nonlinear periodic crystal," Phys. Rev. Lett. 84, 4345-4348 (2000). [CrossRef] [PubMed]
  18. N. Fujioka, S. Ashihara, H. Ono, T. Shimura, and K. Kuroda, "Cascaded third-harmonic generation of ultrashort optical pulses in two-dimensional quasi-phase-matching gratings," J. Opt. Soc. Am. B 24, 2394-2405 (2007). [CrossRef]
  19. S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, "LiTaO3 crystal periodically poled by applying an external pulsed field," J. Appl. Phys. 77, 5481-5483 (1995). [CrossRef]
  20. P. Xu, Z. D. Xie, H. Y. Leng, J. S. Zhao, J. F. Wang, X. Q. Yu, Y. Q. Qin, and S. N. Zhu, "Frequency self-doubling optical parametric amplification: noncollinear red-green-blue light source generation based on a hexagonally poled lithium tantalate," Opt. Lett. 33, 2791-2793 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited