OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 6 — Mar. 16, 2009
  • pp: 4295–4305

Multimode waveguide-cavity sensor based on fringe visibility detection

Alexander C. Ruege and Ronald M. Reano  »View Author Affiliations

Optics Express, Vol. 17, Issue 6, pp. 4295-4305 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (501 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fringe visibility detection of the interaction of two bus spatial eigenmodes with a resonant cavity is investigated for the purpose of achieving a sensor platform with high sensitivity. The power distribution between the bus waveguide eigenmodes is modulated by the interaction with the cavity and is detected via fringe visibility lineshapes produced by twin-fiber interferometry. A test device is fabricated in a polymer-silica material system by a photolithographic process and is characterized by measuring the fringe visibility change as a function of analyte refractive index. Fringe visibility modulation from a straight two-mode waveguide coupled to a single mode ring resonator exposed to an aqueous glucose solution demonstrates a visibility change of 1.57 per weight percent, compared to a transmission change of 0.19 per weight percent for a single mode waveguide critically coupled to a ring with similar intrinsic quality factor. The demonstrated change in fringe visibility is 8.2 times larger.

© 2009 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.6010) Integrated optics : Sensors
(230.5750) Optical devices : Resonators
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Integrated Optics

Original Manuscript: January 5, 2009
Revised Manuscript: February 28, 2009
Manuscript Accepted: March 1, 2009
Published: March 3, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics

Alexander C. Ruege and Ronald M. Reano, "Multimode waveguide-cavity sensor based on fringe visibility detection," Opt. Express 17, 4295-4305 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ksendzov and Y. Lin, "Integrated optics ring-resonator sensors for protein detection," Opt. Lett. 30, 3344-3346 (2005). [CrossRef]
  2. C-Y.  Chao, W.  Fung, and L. J.  Guo, "Polymer microring resonators for biochemical sensing applications," IEEE J. Sel. Top. Quantum Electron.  12, 134-142 (2006). [CrossRef]
  3. A.  Yalcin, K. C.  Popat, O. C.  Aldridge, T. A.  Desai, J.  Hryniewicz, N.  Chbouki, B. E.  Little, O.  King, V.  Van, S.  Chu, D.  Gill, M.  Anthes-Washburn, M. S.  Unlu, and B. B.  Goldberg, "Optical Sensing of Biomolecules Using Microring Resonators," IEEE J. Sel. Top. Quantum Electron.  12, 148-155 (2006). [CrossRef]
  4. C.-Y. Chao and L. J. Guo, "Design and optimization of microring resonators in biochemical sensing applications," J. Lightwave Technol. 24, 1395-1402 (2006). [CrossRef]
  5. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, "Silicon-on-Insulator microring resonator for sensitive and label-free biosensing," Opt. Express 15, 7610-7615 (2007). [CrossRef] [PubMed]
  6. D. X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, "Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding," Opt. Express 16, 15137-15148 (2008). [CrossRef] [PubMed]
  7. R. W. Boyd and J. E. Heebner, "Sensitive disk resonator photonic biosensor," Appl. Opt. 40, 5742-5747 (2001). [CrossRef]
  8. E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, "Sensor based on an integrated optical microcavity," Opt. Lett. 27, 512-514 (2002). [CrossRef]
  9. E.  Krioukov, J.  Greve, and C.  Otto, "Performance of integrated optical microcavities for refractive index and fluorescence sensing," Sens. Actuators B  90, 58-67 (2003). [CrossRef]
  10. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, "Shift of whispering-gallery modes in microspheres by protein adsorption," Opt. Lett. 28, 272-274 (2003). [CrossRef] [PubMed]
  11. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005). [CrossRef]
  12. E.  Chow, A.  Grot, L. W.  Mirkarimi, M.  Sigalas, and G.  Girolami, "Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity," Opt. Lett.  29, 1093-1095 (2004). [CrossRef] [PubMed]
  13. N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, "Photonic-crystal waveguide biosensor," Opt. Express 15, 3169-3176 (2007). [CrossRef] [PubMed]
  14. M. R. Lee and P. M. Fauchet, "Two-dimensional silicon photonic crystal based biosensing platform for protein detection," Opt. Express 15, 4530-4535 (2007). [CrossRef] [PubMed]
  15. S. Mandal and D. Erickson, "Nanoscale optofluidic sensor arrays," Opt. Express 16, 1623-1631 (2008). [CrossRef] [PubMed]
  16. I. M. White, H. Oveys, and X. Fan, "Liquid-core optical ring-resonator sensors," Opt. Lett. 31, 1319-1321 (2006). [CrossRef] [PubMed]
  17. T. Ling and L. J. Guo, "A unique resonance mode observed in a prism-coupled micro-tube resonator sensor with superior index sensitivity," Opt. Express 15, 17424-17432 (2007). [CrossRef] [PubMed]
  18. V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, "Refractometric sensor based on whispering-gallery modes of thin capillarie," Opt. Express 15, 12011-12016 (2007). [CrossRef] [PubMed]
  19. F. Xu, and G. Brambilla, "Demonstration of a refractometric sensor based on optical microfiber coil resonator," Appl. Phys. Lett. 92,101126 (2008). [CrossRef]
  20. A. M.  Armani, R. P.  Kulkarni, S. E.  Fraser, R. C.  Flagan, and K. J.  Vahala, "Label-free, single-molecule detection with optical microcavities," Science  317, 783-787 (2007). [CrossRef] [PubMed]
  21. S. Fan, "Sharp asymmetric line shapes in side-coupled waveguide-cavity systems," Appl. Phys. Lett. 80, 908-910 (2002). [CrossRef]
  22. C.-Y. Chao and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003). [CrossRef]
  23. Y. Xiao, V. Gaddam, and L. Yang, "Coupled optical microcavities: an enhanced refractometric sensing configuration," Opt. Express 16, 12538-12543 (2008). [CrossRef] [PubMed]
  24. M. Sumetsky, "Optimization of optical ring resonator devices for sensing applications," Opt. Lett. 32, 2577-2579 (2007). [CrossRef] [PubMed]
  25. B. T. Lee and S. Y. Shin, "Mode-order converter in a multimode waveguide," Opt. Lett. 28, 1660-1662 (2003). [CrossRef] [PubMed]
  26. L. J. Pelz and B. L. Anderson, "Practical use of the spatial coherence function for determining laser transverse mode structure," Opt. Eng. 34, 3323-3328 (1995). [CrossRef]
  27. K. R. Hiremath, R. Stoffer, and M. Hammer, "Modeling of circular integrated optical microresonators by 2-D frequency domain coupled mode theory," Opt. Commun. 257, 277-297 (2006). [CrossRef]
  28. A. Hardy and W. Streifer, "Coupled mode theory of parallel waveguides," J. Lightwave Technol. 3, 1135-1146 (1985). [CrossRef]
  29. A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron. Lett. 36, 321-322 (2000). [CrossRef]
  30. U. Fano, "Effects of Configuration Interaction on Intensities and Phase Shifts," Phys. Rev. 124, 1866-1878 (1961). [CrossRef]
  31. K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, 2006).
  32. I. M. White and X. Fan, "On the performance quantification of resonant refractive index sensors," Opt. Express 16, 1020-1028 (2008). [CrossRef] [PubMed]
  33. Y. Liu, P. Hering, J., and M. O. Scully, "An Integrated Optical Sensor for Measuring Glucose Concentration," Appl. Phys. B 54, 18-23 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited