OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 6 — Mar. 16, 2009
  • pp: 4330–4335

Compact efficient Q-switched eye-safe laser at 1525 nm with a double-end diffusion-bonded Nd:YVO4 crystal as a self-Raman medium

Y. T. Chang, K. W. Su, H. L. Chang, and Y. F. Chen  »View Author Affiliations


Optics Express, Vol. 17, Issue 6, pp. 4330-4335 (2009)
http://dx.doi.org/10.1364/OE.17.004330


View Full Text Article

Enhanced HTML    Acrobat PDF (223 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on an efficient Q-switched eye-safe laser at 1525 nm with a double-end diffusion-bonded Nd:YVO4 crystal as a self-Raman gain medium. A diffusion-bonded crystal not only reduces the thermal effects but also increase the interaction length for the stimulated Raman scattering. With an input pump power of 17.2 W, average power of 2.23 W at the first-Stokes wavelength of 1525 nm is generated at a pulse repetition rate of 40 kHz, corresponding to a conversion efficiency of 13%.

© 2009 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3550) Lasers and laser optics : Lasers, Raman

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 15, 2009
Revised Manuscript: February 28, 2009
Manuscript Accepted: February 28, 2009
Published: March 3, 2009

Citation
Y. T. Chang, K. W. Su, H. L. Chang, and Y. F. Chen, "Compact efficient Q-switched eye-safe laser at 1525 nm with a double-end diffusion-bonded Nd:YVO4 crystal as a self-Raman medium," Opt. Express 17, 4330-4335 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-6-4330


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. R. Marshall and A. Kaz, "Eye-safe output from noncritically phase-matched parametric oscillators," J. Opt. Soc. Am. B,  10, 1730-1736 (1993). [CrossRef]
  2. G. H. Xiao, M. Bass, and M. Acharekar, "Passively Q-switched solid-state lasers with intracavity optical parametric oscillators," IEEE J. Quantum Electron. 34, 2241-2245 (1998). [CrossRef]
  3. Y. F. Chen, S. W. Chen, S. W. Tsai, and Y. P. Lan, "High-repetition-rate eye-safe optical parametric oscillator intracavity pumped by a diode-pumped Q-switched Nd:YVO4 laser, Appl. Phys. B 76, 263-266 (2003). [CrossRef]
  4. Y. F. Chen, Y. C. Chen, S. W. Chen and Y. P. Lan, "High-power efficient diode-pumped passively Q-switched Nd:YVO4/KTP/Cr4+:YAG eye-safe laser," Opt. Commun. 234, 337-342 (2004). [CrossRef]
  5. R. Fluck, R. Häring, R. Paschotta, E. Gini, H. Melchior, and U. Keller, "Eyesafe pulsed microchip laser using semiconductor saturable absorber mirrors," Appl. Phys. Lett. 72, 3273-3275 (1998). [CrossRef]
  6. I. Sokólska, E. Heumann, S. Kück, and T. Łukasiewicz, "Laser oscillation of Er3+:YVO4 and Er3+, Yb3+:YVO4 crystals in the spectral range around 1.6 μm," Appl. Phys. B 71, 893-896 (2000).
  7. A. Sennaroglu, "Broadly tunable Cr4+-doped solid-state lasers," Prog. Quantum Electron. 26, 287-352 (2002). [CrossRef]
  8. N. Takei, S. Suzuki, and F. Kannari, "20-Hz operation of an eye-safe cascade Raman laser with a Ba(NO3)2 crystal," Appl. Phys. B 74, 521-527 (2002). [CrossRef]
  9. Y. F. Chen, "Compact efficient all-solid-state eye-safe laser with self-frequency Raman conversion in a Nd:YVO4 crystal," Opt. Lett. 29, 2172-2174 (2004). [CrossRef] [PubMed]
  10. Y. F. Chen, "Efficient 1521-nm Nd:GdVO4 Raman laser," Opt. Lett. 29, 2632-2634 (2004). [CrossRef] [PubMed]
  11. A. Brenier, G. Jia, and C. Tu, "Raman lasers at 1.171 and 1.517 μm with self-frequency conversion in SrWO4:Nd+ crystal," J. Phys.: Condens. Matter 16, 9103-9108 (2004). [CrossRef]
  12. J. H. Huang, J. P. Lin, R. B. Su, J. H. Li, H. Zheng, C. H. Xu, F. Shi, Z. Z. Lin, J. Zhuang, W. R. Zeng, and W. X. Lin, "Short pulse eye-safe laser with a stimulated Raman scattering self-conversion based on a Nd:KGW crystal," Opt. Lett. 32, 1096-1098 (2007). [CrossRef]
  13. Y. X. Fan, Y. Liu, Y. H. Duan, Q. Wang, L. Fan, H. T. Wang, G. H. Jia, and C. Y. Tu, "High-efficiency eye-safe intracavity Raman laser at 1531 nm with SrWO4 crystal," Appl. Phys. B 93, 327-330 (2008). [CrossRef]
  14. Z. P. Wang, D. W. Hu, X. Fang, H. J. Zhang, X. G. Xu, J. Y. Wang, and Z. H. Shao, "Eye-safe Raman laser at 1.5 μm based on BaWO4 crystal," Chin. Phys. Lett. 25, 122-124 (2008). [CrossRef]
  15. G. M. A. Gad, H. J. Eichler, and A. A. Kaminskii, "Highly efficient 1.3-μm second-Stokes PbWO4 Raman laser," Opt. Lett. 28, 426-428 (2003). [CrossRef] [PubMed]
  16. H. M. Pask, "The design and operation of solid-state Raman lasers," Prog. Quantum Electron. 27, 3-56 (2003). [CrossRef]
  17. P. Černý, H. Jelínková, P. G. Zverev, and T. T. Basiev "Solid state laser with raman frequency conversion," Prog. Quantum Electron. 28, 113-143 (2004). [CrossRef]
  18. Q1. J. A. Piper and H. M. Pask, "Crysatalline Raman Lasers," IEEE J. Sel. Top. Quantum Electron. 13, 692-704 (2007). [CrossRef]
  19. A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, "Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers," Opt. Commun. 194, 201-206 (2001). [CrossRef]
  20. S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J. Liu, "Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal," IEEE J. Quantum Electron. 42, 927-933 (2006). [CrossRef]
  21. Y. F. Chen, "High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser: influence of dopant concentration," Opt. Lett. 29, 1915-1917 (2004). [CrossRef] [PubMed]
  22. F. F. Su, X. Y. Zhang, Q. P. Wang, S. H. Ding, P. Jia, S. T. Li, S. Z. Fan, C. Zhang, and B. Liu "Diode pumped actively Q-switched Nd:YVO4 self-Raman laser," J. Phys. D: Appl. Phys. 39, 2090-2093 (2006). [CrossRef]
  23. F. Hanson, "Improved laser performance at 946 and 473 nm from a composite Nd:Y3Al5O12 rod," Appl. Phys. Lett. 66, 3549-3551 (1995). [CrossRef]
  24. R. Weber, B. Neuenschwander, M. M. Donald, M. B. Roos, and H. P. Weber, "Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods," IEEE J. Quantum Electron. 34, 1046-1053 (1998). [CrossRef]
  25. Q2. M. Tsunekane, N. Taguchi, T. Kasamatsu, and H. Inaba, "Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry," IEEE J. Sel. Top. Quantum Electron. 3, 9-18 (1997). [CrossRef]
  26. M. Tsunekane, N. Taguchi, and H. Inaba, "Improvement of thermal effects in a diode-end-pumped, composite Tm:YAG rod with undoped ends," Appl. Opt. 38, 1788-1791 (1999). [CrossRef]
  27. M. P. MacDonald, Th. Graf, J. E. Balmer, and H. P. Weber, "Reducing thermal lensing in diode-pumped laser rods," Opt. Commun. 178, 383-393 (2000). [CrossRef]
  28. J. Šulc, H. Jelínková, V. Kubeček, K. Nejezchleb, and K. Blažek, "Comparison of different composite Nd:YAG rods thermal properties under diode pumping," Proc. SPIE 4630, 128-134 (2002). [CrossRef]
  29. Z. Zhuo, T. Li, X Li, and H. Yang, "Investigation of Nd:YVO4/YVO4 composite crystal and its laser performance pumped by a fiber coupled diode laser," Opt. Commun. 274, 176-181 (2007). [CrossRef]
  30. Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, "Comparison of thermal lensing effects between single-end and double-end diffusion-bonded NdYVO4 crystals for 4F3/2→4I11/2 and 4F3/2→4I13/2 transitions," Opt. Express,  16, 21155-21160 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-25-21155. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited