OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 6 — Mar. 16, 2009
  • pp: 4336–4341

Tunable dispersion slope compensator using two uniform fiber Bragg gratings mounted on S-shape plate

Sunduck Kim, Junkye Bae, Kwanil Lee, Sang Hyuck Kim, Je-Myung Jeong, and Sang Bae Lee  »View Author Affiliations


Optics Express, Vol. 17, Issue 6, pp. 4336-4341 (2009)
http://dx.doi.org/10.1364/OE.17.004336


View Full Text Article

Enhanced HTML    Acrobat PDF (239 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and experimentally demonstrate a novel method for tunable dispersion slope compensation. We use two uniform fiber Bragg gratings (FBGs), a spatially designed S-bending stage and 4-port circulator. Two FBGs are mounted on each surface of a metal plate along the calculated quadratic curve. The dispersion slope (DS) can be tuned by adjusting a nonlinear strain along two uniform FBGs without changing second order dispersion as well as the central wavelength. In the experiment, a DS tuning range from -13.9 to -54.8 ps/nm2 is achieved with the bandwidth of larger than 2.0 nm.

© 2009 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 27, 2009
Revised Manuscript: February 26, 2009
Manuscript Accepted: February 26, 2009
Published: March 3, 2009

Citation
Sunduck Kim, Junkye Bae, Kwanil Lee, Sang Hyuck Kim, Je-Myung Jeong, and Sang Bae Lee, "Tunable dispersion slope compensator using two uniform fiber Bragg gratings mounted on S-shape plate," Opt. Express 17, 4336-4341 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-6-4336


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (New York: Academic 1997).
  2. Y. J. Lee, J Bae, K. Lee, J. M. Jeong, and S. B Lee, "Tunable dispersion and dispersion slope compensator using strain-chirped fiber Bragg grating," IEEE Photon. Technol. Lett. 19, 762-764 (2007). [CrossRef]
  3. S. Vorbeck and R. Leppla, "Dispersion and dispersion slope tolerance of 160-Gb/s systems, considering the temperature dependence of chromatic dispersion," IEEE Photon. Technol. Lett. 15, 1470-1472 (2003). [CrossRef]
  4. M. Ibsen and R. Feced, "Fiber Bragg gratings for pure dispersion slope compensation," Opt. Lett. 28, 980-982 (2003). [CrossRef] [PubMed]
  5. H. Lee and G. P. Argawal, "Purely phase-sampled fiber Bragg gratings for broadband dispersion and dispersion slope compensation," IEEE Photon. Technol. Lett. 15, 1091-1093 (2003). [CrossRef]
  6. C. S. Goh, S. Y. Set, and K. Kikuchi, "Design and fabrication of a tunable dispersion-slope compensating module based on strain-chirped fiber Bragg gratings," IEEE Photon. Technol. Lett. 16, 524-526 (2004). [CrossRef]
  7. C. S. Goh, S. Y. Set, K. Taira, S. K. Khijwania, and K. Kikuchi, "Nonlinearly strain-chirped fiber Bragg grating with an adjustable dispersion slope," IEEE Photon. Technol. Lett. 14, 663-665 (2002). [CrossRef]
  8. Y.W. Song, Z. Pan, S. M. R. M. Nezam, C. Yu, Y. Wang, V. Grubsky, H. Li, Y. Li, R. Caldwell, R. Wilcox, and A. E. Willner, "Tunable dispersion slope compensation for 40-Gb/s WDM systems using broadband third-order chirped fiber Bragg gratings," J. Lightwave. Technol,  20, 2259-2266 (2002). [CrossRef]
  9. J. Kwon and B. Lee, "Dispersion-order selectable chromatic dispersion compensator using strain-profile modification blocks," IEEE Photon.Technol. Lett. 15, 1564 (2003) [CrossRef]
  10. S. Matsumoto, M. Takabayashi, K. Yoshiara, T. Sugihara, T. Miyazaki, and F. Kubota, "Tunable dispersion slope compensator with a chirped fiber grating and a divided thin-film heater for 160-Gb/s RZ transmissions," IEEE Photon. Technol. Lett. 16, 1095-1097 (2004). [CrossRef]
  11. P. I. Reyes, N. Litchinitser, M. Sumetsky, and P. S. Westbrook, "160-Gb/s tunable dispersion slope compensator using a chirped fiber Bragg grating and a quadratic heater," IEEE Photon. Technol. Lett. 17, 831-833 (2005). [CrossRef]
  12. J. Kwon, S. Kim, S. Roh, and B. Lee, "Tunable Dispersion Slope Compensator Using a Chirped Fiber Bragg Grating Tuned by a Fan-shaped Thin Metallic Heat Channel," IEEE Photon. Technol. Lett. 18, 118 (2006). [CrossRef]
  13. B. Dabarsyah, C. S. Goh, S. K. Khijwania, S. Y. Set, K. Katoh, and K. Kikuchi, "Adjustable group velocity dispersion and dispersion slope compensation devices with wavelength tunability based on enhanced thermal chirping of fiber Bragg gratings," J. Lightwave Technol. 25, 2711-2718 (2007). [CrossRef]
  14. X. Shu, E. Turitsyna, K. Sugden, and I. Bennion, "Novel complex gratings with third-order group delay variations for tunable pure dispersion slope compensation," Opt. Express 16, 12090 (2008). [CrossRef] [PubMed]
  15. J. Kim, J. Bae, Y. G. Han, S. H. Kim, J. M. Jeong, and S. B. Lee, "Effectively tunable dispersion compensation based on chirped fiber Bragg gratings without central wavelength shift," IEEE Photon. Technol. Lett. 16, 849-851 (2004). [CrossRef]
  16. T. Imai, T. Komukai, and M. Nakazawa, "Dispersion tuning of a linerly chirped fiber grating without a center wavelength shift by applying a strain gradient," IEEE Photon. Technol. Lett. 10, 845-847 (1998) [CrossRef]
  17. Z. Zhao, S. Zhang, Y. Yu, Z. Zhuo, J. Zhang, Y. Qian, W. Zheng, and Y. Zhang, "Tuning sampled nonlinearly chirped fiber Bragg gratings with adjustable chirp and fixed center wavelength," Microwave. Opt. Technol. Lett. 43, 432-434 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited