OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 6 — Mar. 16, 2009
  • pp: 4348–4354

Light wheel confined in a purely dielectric composite waveguide

Yu Qian Ye, Yi Jin, and Sailing He  »View Author Affiliations


Optics Express, Vol. 17, Issue 6, pp. 4348-4354 (2009)
http://dx.doi.org/10.1364/OE.17.004348


View Full Text Article

Enhanced HTML    Acrobat PDF (720 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A properly designed composite waveguide consisting of a one-dimensional photonic crystal waveguide and a conventional dielectric waveguide is proposed for the realization of a localized “light wheel”. Light confinedly rotating between the two waveguides is numerically demonstrated and explained physically in detail. A delocalized “light wheel” is found at the band gap edge caused by contra-directional coupling between the two waveguides. Because of this delocalized “light wheel” , the composite waveguide can be used to trap light as a cavity, and a quality factor of 9×103 is achieved as an example. The present structure is completely dielectric and thus easy to realize with a low loss.

© 2009 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.5750) Optical devices : Resonators
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: December 24, 2008
Revised Manuscript: February 16, 2009
Manuscript Accepted: February 18, 2009
Published: March 3, 2009

Citation
Yu Q. Ye, Yi Jin, and Sailing He, "Light wheel confined in a purely dielectric composite waveguide," Opt. Express 17, 4348-4354 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-6-4348


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding The Flow of Light (Princeton, NJ, 1995).
  2. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003). [CrossRef] [PubMed]
  3. T. Yoshie, J. Vu ˇ ckovi’c, A. Scherer, H. Chen, D. Deppe, "High quality two-dimensional photonic crystal slab cavities," Appl. Phys. Lett. 79, 4289 (2001) [CrossRef]
  4. E. Chow, S. Y. Lin, J. R. Wendt, S. G. Johnson, and J. D. Joannopoulos, "Quantitative analysis of bending efficiency in photonic-crystal waveguide bends at ⌊ = 1.55m wavelengths," Opt. Lett. 26, 286 (2001). [CrossRef]
  5. S. Rennon, F. Klopf, J. P. Reithmaier, and A. Forchel, "12m long edge-emitting quantum-dot laser " Electron. Lett. 37, 690 (2001). [CrossRef]
  6. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: A proposal and analysis," Opt. Lett. 24, 711 (1999) [CrossRef]
  7. S. H. Kwon, H. Y. Ryu, G. H. Kim, and Y. H. Lee, "Photonic bandedge lasers in two-dimensional square-lattice photonic crystal slabs," Appl. Phys. Lett. 83, 3870 (2003). [CrossRef]
  8. L. Ferrier, P. Rojo-Romeo, E. Drouard, X. Letartre, and P. Viktorovitch, "Slow Bloch mode confinement in 2D photonic crystals for surface operating devices," Opt. Express 16, 3136 (2008). [CrossRef] [PubMed]
  9. J. He, Y. Jin, Z. Hong, and S. He "Slow light in a dielectric waveguide with negative-refractive-index photonic crystal cladding," Opt. Express 16, 11077 (2008). [CrossRef] [PubMed]
  10. P. H. Tichit, A. Moreau, and G. Granet, "Localization of light in a lamellar structure with left-handed medium : the Light Wheel," Opt. Express 15, 14961 (2007). [CrossRef] [PubMed]
  11. V. G. Veselago, "Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities," Usp. Fiz. Nauk. 92, 517 (1967).
  12. W. Yan and L. F. Shen, "Open waveguide cavity using a negative index medium," Opt. Lett 33, 2806 (2008). [CrossRef] [PubMed]
  13. Q1. D. Marcuse, "Bandwidth of Forward and Backward Coupling Directional Couplers," IEEE J. Lightwave Technol. 5, 1773-1777 (1987). [CrossRef]
  14. P. Yeh and H. F. Taylor, "Contradirectional frequency-selective couplers for guided-wave optics," Appl. Opt. 19, 2848 (1980). [CrossRef] [PubMed]
  15. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).
  16. Q2. B. Lombardet, L. A. Dunbar, R. Ferrini, and R. Houdr’e, "Fourier analysis of Bloch wave propagation in photonic crystals," J. Opt. Soc. Am. B 22, 1179 (2005). [CrossRef]
  17. W. T. Lu, Y. J. Huang, P. Vodo, R. K. Banyal, C. H. Perry, and S. Sridhar, "A new mechanism for negative refraction and focusing using selective diffraction from surface corrugation," Opt. Express 15, 9166 (2007). [CrossRef] [PubMed]
  18. Z. Xu, J. Wang, Q. He, L. Cao, P. Su, and G. Jin, "Optical filter based on contra-directional waveguide coupling in a 2D photonic crystal with square lattice of dielectric rods," Opt. Express 13, 5608 (2005). [CrossRef] [PubMed]
  19. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic Press, NY, 1991).
  20. V. A. Mandelshtam and H. S. Taylor, "Harmonic inversion of time signals and its applications," J. Chem. Phys. 107, 6756 (1997). [CrossRef]
  21. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs," Phys. Rev. Lett. 87, 253902 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited