OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 6 — Mar. 16, 2009
  • pp: 4388–4396

Suppression of ripples on ablated Ni surface via a polarization grating

Hideo Iwase, Satoshi Kokubo, Saulius Juodkazis, and Hiroaki Misawa  »View Author Affiliations

Optics Express, Vol. 17, Issue 6, pp. 4388-4396 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1223 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Gratings were recorded on the surface of nickel by ablation without formation of ripples using an interference of two p-polarized femtosecond laser beams at a π/4 angle of incidence. The mechanism of ripples’ suppression is explained by formation of a polarization grating and by ablation at the locations where the polarization is normal to the Ni surface. The aspect ratio of the ablated grooves was ~ 3 with the period ~ 570 nm at the central wavelength of irradiation of 800 nm. This method is applicable for laser structuring of different materials and a recorded grating structure can be scaled with the irradiation wavelength.

© 2009 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(160.3900) Materials : Metals
(220.4000) Optical design and fabrication : Microstructure fabrication

ToC Category:
Laser Micromachining

Original Manuscript: December 5, 2008
Revised Manuscript: February 4, 2009
Manuscript Accepted: February 6, 2009
Published: March 4, 2009

Hideo Iwase, Satoshi Kokubo, Saulius Juodkazis, and Hiroaki Misawa, "Suppression of ripples on ablated Ni surface via a polarization grating," Opt. Express 17, 4388-4396 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. J. Birnbaum, "Semiconductor surface damage produced by ruby lasers," J. Appl. Phys. 36, 3688-3689 (1965). [CrossRef]
  2. J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, "Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass," Phys. Rev. B 27, 1155 - 1172 (1983).
  3. D. Emmony, R. Howson, and L. Willis, "Laser mirror damage in germanium at 10.6 m," Appl. Phys. Lett. 23, 598-600 (1973). [CrossRef]
  4. Q. Wu, Y. Ma, R. Fang, Y. Liao, and Q. Yu, "Femtosecond laser-induced periodic surface structure on diamond film," Appl. Phys. Lett. 82, 1703 - 1705 (2003). [CrossRef]
  5. D. Bäuerle, Laser processing and chemistry (Springer, Berlin, 2000).
  6. G. Miyaji and K. Miyazaki, "Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser," Opt. Express 16, 16265-16271 (2008). [CrossRef] [PubMed]
  7. W. Kautek, P. Rudolph, G. Daminelli, and J. Krüger, "Physico-chemical aspects of femtosecond-pulse-laserinducedsurface nanostructures," Appl. Phys. A 81, 65-70 (2005). [CrossRef]
  8. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, "Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses," Phys. Rev. Lett. 91, 247405/1-4 (2003). [CrossRef]
  9. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, "Optically Produced Arrays of Planar Nanostructures inside Fused Silica," Phys. Rev. Lett. 96, 057404/1-4 (2006). [CrossRef]
  10. D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, "Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching," Opt. Express 16, 1517-1522 (2008). [CrossRef] [PubMed]
  11. S. Juodkazis, N. Kujime, H. Okuno, V. Mizeikis, S. Matsuo, and H. Misawa,"Towards nanostructuring of materials by ripples" in Proc. of Joint Int. Workshop CREST& QNN’03, Jul. 21-23, 2003; Awaji, Japan, 117-121 (2003).
  12. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, "Laser-induced periodic surface structure. I. Theory," Phys. Rev. B 27, 1141 - 1154 (1983).
  13. A. E. Siegman and P. M. Fauchet, "Stimulated Wood’s anomalies on laser- illuminated surfaces," IEEE J. Quant. Electr. QE-22, 1384 - 1403 (1986). [CrossRef]
  14. S. E. Clark and D. Emmony, "Ultraviolet-laser-induced periodic surface structures," Phys. Rev. B 40, 2031-2041 (1989).
  15. S. A. Akhmanov, V. I. Emel’yanov, N. I. Koroteev, and V. N. Seminogov, "Effect of high-intensity laser irradiation onto surfaces of semiconductirs and metals: optical nonlinear effects and nonlinear optical diagnostics," Sov. Phys. Usp. 28, 675-745 (1985).
  16. X. J. Wu, T. Q. Jia, F. L. Zhao, M. Huang, N. S. Xu, H, Kuroda, and Z. Z. Xu, "Formation mechanisms of uniform arrays of periodic nanoparticles and nanoripples on 6H-SiC crystal surface induced by femtosecond laser ablation," Appl. Phys. A 86, 491-495 (2007). [CrossRef]
  17. T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, "Effect of surface roughening on femtosecond laserinduced ripple structures," Appl. Phys. Lett. 90, 153115 (2007). [CrossRef]
  18. H. Morikami, H. Yoneda, K.-I. Ueda, and R. M. More, "Detection of hydrodynamic expansion in ultrashort pulse laser ellipsometric pump-probe experiments," Phys. Rev. E 70, 035401(R)/1-3 (2004).
  19. P. Günter and J.-P. Huignard, Photorefractive materials and their applications 1: basic effects (Springer, New York, 2006). [CrossRef]
  20. S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional structuring of resists and resins by direct laser writing and holographic recording," Adv. Polym. Sci. 213, 157-206 (2008).
  21. F. Brunel, "Not-so-resonant, resonant absorption," Phys. Rev. Lett. 59, 52 - 55 (1987). [CrossRef] [PubMed]
  22. E. G. Gamaly, N. R. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther-Davis, "Ablation of metals with picosecond laser pulses: evidence of long-lived nonequilibrium conditions at the surface," Phys Rev. B 71, 174405/1-12 (2005).
  23. K. Hatanaka, T. Ida, H. Ono, S.-I. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, "Chirp effect in hard X-ray generation from liquid target when irradiated by femtosecond pulses," Opt. Express 16, 12650-12657 (2008). [PubMed]
  24. H. Wang, L. Shi, B. Luk’yanchuk, C. Sheppard, and C. T. Chong "Creation of a needle of longitudinal polarized light in vacuum using binary optics," Nature Photon. 2, 501-505 (2008). [CrossRef]
  25. S. Juodkazis, H. Misawa, O. A. Louchev, and K. Kitamura, "Femtosecond laser ablation of chalcogenide glass: explosive formation of nano-fibers against thermo-capillary growth of micro-spheres," Nanotechnology 17, 4802 - 4805 (2006). [CrossRef]
  26. S. P. Gorkhali, S. G. Cloutier, and G. P. Crawford, and R. A. Pelcovits, "Stable polarization gratings recorded in azo-dye-doped liquid crystals," Appl. Phys. Lett. 8, 251113 (2006). [CrossRef]
  27. H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, "Highly stable polarization gratings in photocrosslinkable polymer liquid crystals," J. Appl. Phys. 94, 1298-1302 (2003). [CrossRef]
  28. T. Hashimoto, S. Juodkazis, and H. Misawa, "Void formation in glass," New. J. Phys. 9, 253 /1-9, (2007). [CrossRef]
  29. K. Yamasaki, S. Juodkazis, S. Matsuo, and H. Misawa, "Three-dimensional micro-channels in polymers: onestep fabrication," Appl. Phys. A: Mat. Sci. Proc. 77, 371 - 373 (2003). [CrossRef]
  30. S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, "Formation of embedded patterns in glasses using femtosecond irradiation," Appl. Phys. A: Mat. Sci. Proc. 79, 1549-1553 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited