OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 6 — Mar. 16, 2009
  • pp: 4397–4411

Absolute efficiency estimation of photon-number-resolving detectors using twin beams

A. P. Worsley, H. B. Coldenstrodt-Ronge, J. S. Lundeen, P. J. Mosley, B. J. Smith, G. Puentes, N. Thomas-Peter, and I. A. Walmsley  »View Author Affiliations


Optics Express, Vol. 17, Issue 6, pp. 4397-4411 (2009)
http://dx.doi.org/10.1364/OE.17.004397


View Full Text Article

Enhanced HTML    Acrobat PDF (421 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A nonclassical light source is used to demonstrate experimentally the absolute efficiency calibration of a photon-number-resolving detector. The photon-pair detector calibration method developed by Klyshko for single-photon detectors is generalized to take advantage of the higher dynamic range and additional information provided by photon-number-resolving detectors. This enables the use of brighter twin-beam sources including amplified pulse pumped sources, which increases the relevant signal and provides measurement redundancy, making the calibration more robust.

© 2009 Optical Society of America

OCIS Codes
(030.5630) Coherence and statistical optics : Radiometry
(040.5570) Detectors : Quantum detectors
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.4800) Instrumentation, measurement, and metrology : Optical standards and testing
(270.5290) Quantum optics : Photon statistics
(270.6570) Quantum optics : Squeezed states

ToC Category:
Quantum Optics

History
Original Manuscript: January 8, 2009
Revised Manuscript: February 20, 2009
Manuscript Accepted: February 21, 2009
Published: March 4, 2009

Citation
A. P. Worsley, H. B. Coldenstrodt-Ronge, J. S. Lundeen, P. J. Mosley, B. J. Smith, G. Puentes, N. Thomas-Peter, and I. A. Walmsley, "Absolute efficiency estimation of photon-number-resolving detectors using twin beams," Opt. Express 17, 4397-4411 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-6-4397


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Giovannetti, S. Lloyd, and L. Maccone, "Quantum-Enhanced Measurements: Beating the Standard Quantum Limit," Science 306, 1330-1336 (2004). [CrossRef] [PubMed]
  2. O. Haderka, M. Hamar, and J. PerinaJr., "Experimental multi-photon-resolving detector using a single avalanche photodiode," Eur. Phys. J. D 28, 149-154 (2004). [CrossRef]
  3. D. Achilles, C. Silberhorn, C. Sliwa, K. Banaszek, I. A. Walmsley, M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, "Photon-number-resolving detection using time-multiplexing," J. Mod. Opt. 51, 1499-1515 (2004).
  4. L. A. Jiang, E. A. Dauler, and J. T. Chang, "Photon-number-resolving detector with 10 bits of resolution," Phys. Rev. A 75, 062325 (2007). [CrossRef]
  5. B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, "Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors," Appl. Phys. Lett. 73, 735 (1998). [CrossRef]
  6. A. J. Miller, S.W. Nam, J. M. Martinis, and A. V. Sergienko, "Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination," Appl. Phys. Lett. 83, 791-793 (2003). [CrossRef]
  7. D. Rosenberg, A. E. Lita, A. J. Miller, and S. W. Nam, "Noise-free high-efficiency photon-number-resolving detectors," Phys. Rev. A 72, 019901 (2005). [CrossRef]
  8. M. Fujiwara, and M. Sasaki, "Photon-number-resolving detection at a telecommunications wavelength with a charge-integration photon detector," Opt. Lett. 31, 691-693 (2006). [CrossRef] [PubMed]
  9. A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lvy, and A. Fiore, "Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths," Nature Photon. 2, 302-306 (2008). [CrossRef]
  10. R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, "Single photon source characterization with a superconducting single photon detector," Opt. Express 13, 10846-10853 (2005). [CrossRef] [PubMed]
  11. J. S. Kim, S. Takeuchi, Y. Yamamoto, and H. H. Hogue, "Multiphoton detection using visible light photon counter," Appl. Phys. Lett. 74, 902-904 (1999). [CrossRef]
  12. A. J. Shields, M. P. O’Sullivan, I. Farrer, D. A. Ritchie, R. A. Hogg, M. L. Leadbeater, C. E. Norman, and M. Pepper, "Detection of single photons using a field-effect transistor gated by a layer of quantum dots," Appl. Phys. Lett. 76, 3673-3675 (2000). [CrossRef]
  13. B. E. Kardynal, S. S. Hees, A. J. Shields, C. Nicoll, I. Farrer, and D. A. Ritchie, "Photon number resolving detector based on a quantum dot field effect transistor," Appl. Phys. Lett. 90, 181114 (2007). [CrossRef]
  14. R. L. Booker and D. A. McSparron, "Photometric Calibrations," Natl. Bur. Stand. (U.S.) Spec. Publ. 250-15 (1987).
  15. T. R. Gentile, J. M. Houston, J. E. Hardis, C. L. Cromer, and A. C. Parr, "National Institute of Standards and Technology high-accuracy cryogenic radiometer," Appl. Opt. 35, 1056-1068 (1996). [CrossRef] [PubMed]
  16. D. N. Klyshko, "Use of two-photon light for absolute calibration of photoelectric detectors," Sov. J. Quantum Electron. 10, 1112-1117 (1980). [CrossRef]
  17. J. G. Rarity, K. D. Ridley, and P. R. Tapster, "Absolute measurement of quantum efficiency using parametric down conversion," Appl. Opt. 26, 4616-4618 (1987). [CrossRef] [PubMed]
  18. A. N. Penin, and A. V. Sergienko, "Absolute standardless calibration of photodetectors based on quantum twophoton fields," Appl. Opt. 30, 3582-3588 (1991). [CrossRef] [PubMed]
  19. P. G. Kwiat, A. M. Steinberg, R. Y. Chao, P. H. Eberhard, and M. D. Petroff, "High-efficiency single-photon detectors," Phys. Rev. A 48, R867-R870 (1993). [CrossRef] [PubMed]
  20. A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, and Y. H. Shih,"Absolute detector quantum efficiency measurements using correlated photons," Metrologia 32, 479-483 (1996). [CrossRef]
  21. M. Avenhaus, H. B. Coldenstrodt-Ronge, K. Laiho, W. Mauerer, I. A. Walmsley, and C. Silberhorn," Photon number statistics of multimode parametric down conversion," Phys. Rev. Lett. 101, 053601 (2008). [CrossRef] [PubMed]
  22. J. PerinaJr., O. Haderka, and M. Hamar "Statistical properties of twin beams generated in spontaneous parametric downconversion," http://arxiv.org/abs/quant-ph/0310065.
  23. Hamamatsu, "MPPC Multi-Pixel Photon Counter," http://sales.hamamatsu.com/assets/pdf/catsandguides/mppc kapd0002e03.pdf.
  24. H. B. Coldenstrodt-Ronge, J. S. Lundeen, K. L. Pregnell, A. Feito, B. J. Smith, W. Mauerer, C. Silberhorn, J. Eisert, M. B. Plenio, and I. A. Walmsley, "A proposed testbed for detector tomography," J. Mod. Opt. iFirst, 1-10 (2008), http://dx.doi.org/10.1080/09500340802304929.
  25. J. S. Lundeen, A. Feito, H. Coldenstrodt-Ronge, K. L. Pregnell, C. Silberhorn, T. C. Ralph, J. Eisert, M. B. Plenio, and I. A. Walmsley, "Tomography of quantum detectors," Nature Phys. 5, 27-30 (2009). [CrossRef]
  26. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A.Walmsley, "Heralded Generation of Ultrafast Single Photons in Pure Quantum States," Phys. Rev. Lett. 100, 133601 (2008). [CrossRef] [PubMed]
  27. E. Waks, B. C. Sanders, E. Diamanti, and Y. Yamamoto, "Highly nonclassical photon statistics in parametric down-conversion," Phys. Rev. A 73, 033814 (2006). [CrossRef]
  28. L. Mandel, "Fluctuations of Photon Beams: The Distribution of the Photo-Electrons," Proc. Phys. Soc. London 74, 233-243 (1959). [CrossRef]
  29. R. L. Kosut, I. A. Walmsley, and H. Rabitz "Optimal Experiment Design for Quantum State and Process Tomography and Hamiltonian Parameter Estimation," http://arxiv.org/abs/quant-ph/0411093.
  30. D. Achilles, C. Silberhorn, and I. A. Walmsley, "Direct, Loss-Tolerant Characterization of Nonclassical Photon Statistics," Phys. Rev. Lett. 97, 043642 (2006). [CrossRef]
  31. Fluorescence is typically a broadband multimode process and thus has a Poisson distribution [28].
  32. P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, "Conditional Preparation of Single Photons Using Parametric Downconversion: A recipe for Purity," New J. Phys. 10, 093011 (2008). [CrossRef]
  33. H. B. Coldenstrodt-Ronge, and C. Silberhorn, "Avalanche photo-detection for high data rate applications," J. Phys. B 40, 3909-3921 (2007). [CrossRef]
  34. Y. Ohno, "Improved Photometric Standards and Calibration Procedures at NIST," J. Res. Natl. Inst. Stand. Technol. 102, 323 (1997).
  35. Bureau International des Poids et Mesures, "The international system of units (SI) 8th edition," http://www.bipm.org/utils/common/pdf/si brochure 8.pdf.
  36. J. Y. Cheung, C. J. Chunnilall, E. R. Woolliams, N. P. Fox, J. R. Mountford, J. Wang and P. J. Thomas, "The quantum candela: a re-definition of the standard units for optical radiation," J. Mod. Opt. 54, 373-396 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited