OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 6 — Mar. 16, 2009
  • pp: 4433–4441

Total optical transmission through a small hole in a metal waveguide screen

Y. Pang, A. N. Hone, P. P. M. So, and R. Gordon  »View Author Affiliations

Optics Express, Vol. 17, Issue 6, pp. 4433-4441 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (345 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the theory of total optical transmission through a small hole in metal waveguide screen. Unlike past works on extraordinary optical transmission using arrays, there is only a single hole; yet, the theory predicts total transmission for a perfect electric conductor (not normalized to the hole size) 100% transmission, regardless of how small the hole. This is very surprising considering the usual application of Bethe’s theory to waveguide apertures. Comprehensive numerical simulations agree well with the theory and their modal-analysis supports the proposed evanescent-mode mechanism for total transmission. These simulations are extended to show the influence of realistic material response (including loss) at microwave and visible-infrared frequencies. Due to the strong resonant field localization and transmission from only a thin metal screen with a single hole, many promising applications arise for this phenomenon including filtering, sensing, plasma generation, nonlinear optics, spectroscopy, heating, optical trapping, near-field microscopy and cavity quantum electrodynamics.

© 2009 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(050.1940) Diffraction and gratings : Diffraction
(120.2440) Instrumentation, measurement, and metrology : Filters
(120.7000) Instrumentation, measurement, and metrology : Transmission
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: January 29, 2009
Revised Manuscript: March 2, 2009
Manuscript Accepted: March 2, 2009
Published: March 4, 2009

Y. Pang, A. N. Hone, P. P. So, and R. Gordon, "Total optical transmission through a small hole in a metal waveguide screen," Opt. Express 17, 4433-4441 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66, 163-182 (1944). [CrossRef]
  2. T.W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary Optical Transmission through Sub-wavelength Hole Arrays," Nature 391, 667 - 669 (1998). [CrossRef]
  3. C. Genet and T. W. Ebbesen, "Light in Tiny Holes," Nature 445, 39 - 46 (2007). [CrossRef] [PubMed]
  4. F. J. G. de Abajo, R. Gomez-Medina, and J. J. R. Saenz, "Full Transmission through Perfect-Conductor Subwavelength Hole Arrays," Phys. Rev. E 2, 016,608 (2005).
  5. R. Gordon, "Bethe’s Aperture Theory for Arrays," Phys. Rev. A 76, 053,806 (2007).
  6. D. M. Pozar, Microwave Engineering (John Wiley and Sons Inc, Amherst, 2004).
  7. A. Y. Shulman, "Edge Condition in Diffraction Theory and Maximum Enhancement of Electromagnetic Field in the Near Zone," Phys. Status Solidi A 175, 279 - 287 (1999). [CrossRef]
  8. H. Shin, P. B. Catrysse, and S. Fan, "Effect of the Plasmonic Dispersion Relation on the Transmission Properties of Subwavelength Cylindrical Holes," Phys. Rev. B 72, 085,436 (2005). [CrossRef]
  9. F. Medina, F. Mesa, and R. Marques, "Extraordinary Transmission Through Arrays of Electrically Small Holes From a Circuit Theory Perspective," IEEE Trans. Microwave Theory Tech. 3108-3120 (2008).
  10. R. Ulrich, "Far-infrared properties of metallic mesh and its complementary structure," Infrared Phys. 7, 37 (1967). [CrossRef]
  11. J. D. Jackson, Classical Electrodynamics (John Wiley and Sons Inc, New York, 1999).
  12. N. Marcuvitz, Waveguide Handbook (Peter Peregrinus Ltd., London, UK, 1984).
  13. F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, "Transmission of Light through a Single Rectangular Hole in a Real Metal," Phys. Rev. B 74, 153,411 (2006). [CrossRef]
  14. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2004). [CrossRef] [PubMed]
  15. F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of Light through a Single Rectangular Hole," Phys. Rev. Lett. 95, 103,901 (2005). [CrossRef]
  16. F. J. G. de Abajo, "Colloquium: Light Scattering by Particle and Hole Arrays," Rev. Mod. Phys. 79, 1267 - 1290 (2007). [CrossRef]
  17. I. Stevanovic, P. Crespo-Valero, and J. R. Mosig, "An Integral-Equation Technique for Solving Thick Irises in Rectangular Waveguides," IEEE Trans. Mocrowave Theory Tech. 54, 189 - 197 (2006). [CrossRef]
  18. M. Golosovsky and D. Davidov, "Novel millimeter-wave near-field resistivity microscope," Appl. Phys. Lett. 68, 1579-1581 (1996). [CrossRef]
  19. J. W. Lee, M. A. Seo, J. Y. Sohn, Y. H. Ahn, D. S. Kim, S. C. Jeoung, C. Lienau, and Q. H. Park, "Invisible plasmonic meta-materials through impedance matching to vacuum," Opt. Express 13, 681-687 (2005).
  20. C. J. Bouwkamp, "Diffraction Theory," Rep. Prog. Phys. 17, 35 - 100 (1954). [CrossRef]
  21. A. J. L. Adam, J. M. Brok, M. A. Seo, K. J. Ahn, D. S. Kim, J. H. Kang, Q. H. Park, M. Nagel, and P. C. M. Planken, "Advanced Terahertz Electric Near-Field Measurements at Sub-Wavelangth Diameter Metallic Apertures," Opt. Express 16, 7407 - 7417 (2008). [CrossRef] [PubMed]
  22. J. W. Lee, M. A. Seo, D. J. Park, and D. S. Kim, "Shape Resonance Omni-Directional Terahertz Filters with Near-Unity Transmittance," Opt. Express 14, 1253 - 1259 (2006). [CrossRef] [PubMed]
  23. E. X. Jin and X. Xu, "Plasmonic Effects in Near-Field Optical Transmission Enhancement through a Single Bowtie-Shaped Aperture," Appl. Phys. B 84, 3 - 9 (2006). [CrossRef]
  24. D. Gerard, J. Wenger, N. Bonod, E. Popov, and H. Rigneault, "Nanoaperture-Enhanced Fluorescence: Towards Higher Detection Rates with Plasmonic Metals," Phys. Rev. B 77, 045,413 (2008). [CrossRef]
  25. Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, "Biosensing Based upon Molecular Confinement in Metallic Nanocavity Arrays," Nanotechnology 15, 1368-1374 (2004). [CrossRef]
  26. A. P. Hibbins and J. R. Sambles, "Squeezing Millimeter Waves into Microns," Phys. Rev. Lett. 92, 143,904 (2004). [CrossRef]
  27. M. Silveirinha and N. Engheta, "Tunneling of Electromagnetic Energy through Subwavelength Channels and Bends using epsilon-Near-Zero Materials," Phys. Rev. Lett. 97, 157,403 (2006). [CrossRef]
  28. A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, "Coherent Operation of a Tunable Quantum Phase Gate in Cavity QED," Phys. Rev. Lett. 83, 5166 - 5169 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

Supplementary Material

» Media 1: MOV (662 KB)     
» Media 2: MOV (530 KB)     
» Media 3: MPG (913 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited