OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 6 — Mar. 16, 2009
  • pp: 4442–4453

Biased liquid crystal infiltrated photonic bandgap fiber

Johannes Weirich, Jesper Lægsgaard, Lara Scolari, Lei Wei, Thomas Tanggaard Alkeskjold, and Anders Bjarklev  »View Author Affiliations


Optics Express, Vol. 17, Issue 6, pp. 4442-4453 (2009)
http://dx.doi.org/10.1364/OE.17.004442


View Full Text Article

Enhanced HTML    Acrobat PDF (740 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A simulation scheme for the transmission spectrum of a photonic crystal fiber infiltrated with a nematic liquid crystal and subject to an external bias is presented. The alignment of the biased liquid crystal is simulated using the finite element method to solve the relevant system of coupled partial differential equations. From the liquid crystal alignment the full tensorial dielectric permittivity in the capillaries is derived. The transmission spectrum for the photonic crystal fiber is obtained by solving the generalized eigenvalue problem deriving from Maxwell’s equations using a vector element based finite element method. We demonstrate results for a splay aligned liquid crystal infiltrated into the capillaries of a four-ring photonic crystal fiber and compare them to corresponding experiments.

© 2009 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Photonic Crystal Fibers

History
Original Manuscript: December 12, 2008
Revised Manuscript: January 31, 2009
Manuscript Accepted: March 3, 2009
Published: March 5, 2009

Citation
Johannes Weirich, Jesper Laegsgaard, Lara Scolari, Lei Wei, Thomas Tanggaard Alkeskjold, and Anders Bjarklev, "Biased liquid crystal infiltrated photonic bandgap fiber," Opt. Express 17, 4442-4453 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-6-4442


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003). [CrossRef] [PubMed]
  2. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres, (Kluwer Academic, Dordrecht, 2003).
  3. C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, "Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber," Opt. Commun. 204, 179-184 (2002). [CrossRef]
  4. T. T. Larsen, A. Bjarklev, D. S. Hermann and J. Broeng, "Optic devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003). [CrossRef] [PubMed]
  5. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express 12, 5857-5871 (2004). [CrossRef] [PubMed]
  6. M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005). [CrossRef]
  7. L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, P. Bassi, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Express 13, 7483-7496 (2005). [CrossRef] [PubMed]
  8. T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki and J. Wojcik, "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres," Meas. Sci. Technol. 17, 985-991 (2006). [CrossRef]
  9. L. Scolari, T. T. Alkeskjold, A. O. Bjarklev, "Tunable gaussian filter based on tapered liquid crystal photonic bandgap fibre," Electron. Lett. 42, 1270-1271 (2006). [CrossRef]
  10. D. Nordegraaf, L. Scolari, J. Lgsgaard, L. Rindorf, and T. T. Alkeskjold, "Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers," Opt. Express 15, 7901-7912 (2007). [CrossRef]
  11. T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Laegsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S. T. Wu, and A. O. Bjarklev, "Integrating liquid crystal based optical devices in photonic crystal fibers," Opt. Quantum Electron. 39, 1009-1019 (2007). [CrossRef]
  12. P. D. de Gennes, The Physics of Liquid Crystals, (Clarendon, 1974).
  13. J. Lægsgaard, "Modelling of a biased liquid-crystal capillary waveguide," J. Opt. Soc. Am. B 23, 1843-1851 (2006). [CrossRef]
  14. S. V. Burylov, "Equilibrium configuration of a nematic liquid crystal confined to a cylindrical cavity," J. Exp. Theor. Phys. 85, 873-886 (1997). [CrossRef]
  15. J. Li and S. T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," J. Appl. Phys. 95, 896-901 (2004). [CrossRef]
  16. N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, "Application of an ARROW model for designing tunable photonic devices," Opt. Express 12, 5857-5871 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited