OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 6 — Mar. 16, 2009
  • pp: 4533–4539

CO2 laser writing of long-period fiber grating in photonic crystal fiber under tension

H. W. Lee and K. S. Chiang  »View Author Affiliations

Optics Express, Vol. 17, Issue 6, pp. 4533-4539 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (6690 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate that the efficiency of CO2 laser writing of long-period fiber gratings in a solid-core photonic crystal fiber (PCF) can be enhanced greatly by applying tension to the fiber during the writing process through the mechanism of frozen-in viscoelasticity. Using this mechanism, we are able to write strong gratings in PCFs with a dosage of CO2 laser radiation low enough not to cause any significant fiber structure deformation.

© 2009 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: February 9, 2009
Revised Manuscript: March 3, 2009
Manuscript Accepted: March 4, 2009
Published: March 6, 2009

H. W. Lee and K. S. Chiang, "CO2 laser writing of long-period fiber grating in photonic crystal fiber under tension," Opt. Express 17, 4533-4539 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol 14, 58−65 (1996). [CrossRef]
  2. K. S. Chiang and Q. Liu, "Long-period gratings for application in optical communications," Proc. 5th International Conference on Optical Communications and Networks and 2nd International Symposium on Advances and Trends in Fiber Optics and Applications (ICOCN/ATFO 2006) (Chengdu, China, Sept. 2006), 128−133 (2006).
  3. S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49−R61 (2003). [CrossRef]
  4. G. Kakarantzas, T. A. Birks, and P. St. J. Russell, "Structural long period gratings in photonic crystal fibers," Opt. Lett. 27, 1013-1015 (2002). [CrossRef]
  5. Y. Zhu, P. Shum, H. J. Chong, M. K. Rao, and C. Lu, "Strong resonance and a highly compact long period grating in a large mode area photonic crystal fiber," Opt. Express 11, 1900-1905 (2003). [CrossRef] [PubMed]
  6. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Hoiby, and O. Bang, "Photonic crystal fiber long-period gratings for biochemical sensing," Opt. Express 14, 8224-8231 (2006). [CrossRef] [PubMed]
  7. Y. Wang, L. Xiao, D. N. Wang, and W. Jin, "In-fiber polarizer based on a long-period fiber grating written on photonic crystal fiber," Opt. Lett. 32, 1035-1037 (2007). [CrossRef] [PubMed]
  8. H. W. Lee, Y. Liu, and K. S. Chiang, "Writing of long-period gratings in conventional and photonic-crystal polarization-maintaining fibers by CO2-laser pulses," IEEE Photon. Technol. Lett. 20, 132−134 (2008). [CrossRef]
  9. Y. Wang, W. Jin, J. Ju, H. Xuan, H. L. Ho, L. Xiao, and D. Wang, "Long period gratings in air-core photonic bandgap fibers," Opt. Express 16, 2784-2790 (2008). [CrossRef] [PubMed]
  10. Z. He, Y. Zhu, and H. Du, "Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution," Appl. Phys. Lett. 92, 044105 (2008). [CrossRef]
  11. J. H. Lim, K. S. Lee, J. C. Kim, and B. H. Lee, "Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure," Opt. Lett. 29, 331-333 (2004). [CrossRef] [PubMed]
  12. Z. He, Y. Zhu, and H. Du, "Effect of macro-bending on resonant wavelength and intensity of long-period gratings in photonic crystal fiber," Opt. Express 15, 1804-1810 (2007). [CrossRef] [PubMed]
  13. P. Steinvurzel, E. D. Moore, E. C. Magi, and B. J. Eggleton, "Tuning properties of long period gratings in photonic bandgap fibers," Opt. Lett. 31, 2103-2105 (2006). [CrossRef] [PubMed]
  14. G. Brambilla, A. A. Fotiadi, S. A. Slattery, and D. N. Nikogosyan, "Two-photon photochemical long-period grating fabrication in pure-fused-silica photonic crystal fiber," Opt. Lett. 31, 2675-2677 (2006). [CrossRef] [PubMed]
  15. A. A. Fotiadi, G. Brambilla, T. Ernst, S. A. Slattery, and D. N. Nikogosyan, "TPA-induced long-period gratings in photonic crystal fiber: inscription and temperature sensing properties," J. Opt. Soc. Am. B 24, 1475-1481 (2007). [CrossRef]
  16. G. Humbert, A. Malki, S. Fervrier, P. Roy, and D. Pafnous, "Electric arc-induced long period gratings in Ge-free air silica microstructure fibre," Electron. Lett. 39, 349-350 (2003). [CrossRef]
  17. K. Morishita and Y. Miyake, "Fabrication and resonance wavelengths of long period grating written in a pure silica photonic crystal fiber by the glass structure change," J. Lightwave Technol. 22, 625-630 (2004). [CrossRef]
  18. T. B. Iredale, P. Steinvurzel, and B. J. Eggleton, "Electric-arc-induced long-period gratings in fluid-filled photonic bandgap fibre," Electron. Lett. 42, 739-740 (2006). [CrossRef]
  19. H. Dobb, K. Kalli, and D. J. Webb, "Temperature-insensitive long period grating sensors in photonic crystal fibre," Electron. Lett. 40, 657-658 (2004). [CrossRef]
  20. C. S. Kim, Y. Han, B. H. Lee, W. T. Han, U. C. Paek, and Y. Chung, "Induction of the refractive index changes in B-doped optical fibers through relaxation of the mechanical stress," Opt. Commun. 185, 337−342 (2000). [CrossRef]
  21. Y. Liu, H. W. Lee, K. S. Chiang, T. Zhu, and Y. J. Rao, "Glass structure changes in CO2-laser writing of long-period fiber gratings in boron-doped single-mode fibers," J. Lightwave Technol. 2008 (to appear).
  22. Y. Liu and K. S. Chiang, "CO2 laser writing of long-period fiber gratings in optical fibers under tension," Opt. Lett. 33, 1933-1935 (2008). [CrossRef] [PubMed]
  23. A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, "Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity," Appl. Phys. Lett. 84, 19-21 (2004). [CrossRef]
  24. A. D. Yablon, "Optical and mechanical effects of frozen-in stresses and strains in optical fibers," IEEE J. Sel. Top. Quantum Electron. 10, 300-311 (2004). [CrossRef]
  25. E. Salik, D. S. Starodubov, and J. Feinberg, "Increase of photosensitivity in Ge-doped fibers under strain," Opt. Lett. 25, 1147-1149 (2000). [CrossRef]
  26. R. Slavík, "Extremely deep long-period fiber grating made with CO2 laser," IEEE Photon. Technol. Lett. 18, 1705-1707 (2006). [CrossRef]
  27. G. M Rego, J. L. Santos, and H. M. Salgado, "Polarization dependent loss of arc-induced long-period fibre gratings," Opt. Commun. 262, 152-156 (2006). [CrossRef]
  28. G. Rego, "Polarization dependent loss of mechanically induced long-period fibre gratings," Opt. Commun. 281, 255-259 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited