OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 6 — Mar. 16, 2009
  • pp: 4685–4704

Accurate detection and complete tracking of large populations of features in three dimensions

Yongxiang Gao and Maria L. Kilfoi  »View Author Affiliations

Optics Express, Vol. 17, Issue 6, pp. 4685-4704 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (691 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Localization and tracking of colloidal particles in microscopy images generates the raw data necessary to understand both the dynamics and the mechanical properties of colloidal model systems. Yet, despite the obvious importance of analyzing particle movement in three dimensions (3D), accurate sub-pixel localization of the particles in 3D has received little attention so far. Tracking has been limited by the choice of whether to track all particles in a low-density system, or whether to neglect the most mobile fraction of particles in a dense system. Moreover, assertions are frequently made on the accuracies of methods for locating particles in colloid physics and in biology, and the field of particle locating and tracking can be well-served by quantitative comparison of relative performances.We show that by iterating sub-pixel localization in three dimensions, the centers of particles can be more accurately located in three-dimensions (3D) than with all previous methods by at least half an order of magnitude. In addition, we show that implementing a multi-pass deflation approach, greater fidelity can be achieved in reconstruction of trajectories, once particle positions are known. In general, all future work must defend the accuracy of the particle tracks to be considered reliable. Specifically, other researchers must use the methods presented here (or an alternative whose accuracy can be substantianted) in order for the entire investigation to be considered legitimate, if the basis of the physical argument (in colloids, biology, or any other application) depends on quantitative accuracy of particle positions.We compare our algorithms to other recent and related advances in location/tracking in colloids and in biology, and discuss the relative strengths and weaknesses of all the algorithms in various situations. We carry out performance tests directly comparing the accuracy of our and other 3D methods with simulated data for both location and tracking, and in providing relative performance data, we assess just how accurately software can locate particles. We discuss how our methods, now applied to colloids, could improve the location and tracking of features such as quantum dots in cells.

© 2009 Optical Society of America

OCIS Codes
(100.2960) Image processing : Image analysis
(100.6890) Image processing : Three-dimensional image processing
(180.1790) Microscopy : Confocal microscopy
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:
Image Processing

Original Manuscript: February 4, 2009
Revised Manuscript: February 26, 2009
Manuscript Accepted: February 28, 2009
Published: March 9, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics

Yongxiang Gao and Maria L. Kilfoil, "Accurate detection and complete tracking of large populations of features in three dimensions," Opt. Express 17, 4685-4704 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Gasser, E. R. Weeks, A. Schofield, P. N. Pusey, and D. A. Weitz, "Real-Space Imaging of Nucleation and Growth in Colloidal Crystallization," Science 292,258-262 (2001). [CrossRef] [PubMed]
  2. A. M. Alsayed, M. F. Islam, J. Zhang, P. J. Collins, and A. G. Yodh, "Premelting at defects within bulk colloidal crystals," Science 309,1207-1210 (2005). [CrossRef] [PubMed]
  3. V.W. A. de Villeneuve, R. P. A. Dullens, D. G. A. L. Aarts, E. Groeneveld, J. H. Scherff,W. K. Kegel, and H. N.W. Lekkerkerker, "Colloidal Hard-Sphere Crystal Growth Frustrated by Large Spherical Impurities," Science 309,1231-1233 (2005). [CrossRef] [PubMed]
  4. E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, "Three-dimensional Direct Imaging of Structural Relaxation Near the Colloidal Glass Transition," Science 287,627-631 (2000). [CrossRef] [PubMed]
  5. J. C. Crocker and D. G. Grier, "Methods of Digital Video Microscopy for Colloidal Studies," J. Colloid Interface Sci. 179,298-310 (1996). [CrossRef]
  6. E. R. Weeks and D. A. Weitz, "Properties of cage rearrangements observed near the colloidal glass transition" Phys. Rev. Lett. 89,957041 (2002). [CrossRef]
  7. R. P. A. Dullens, D. G. A. L. Aarts, and W. W. Kegel, "Direct measurement of the free energy by optical microscopy," Proc. Natl. Acad. Sci. U.S.A. 103,529-531 (2006). [CrossRef] [PubMed]
  8. P. Schall, D. A. Weitz, and F. Spaepen, "Structural Rearrangements That Govern Flow in Colloidal Glasses," Science 318,1895-1899 (2007). [CrossRef] [PubMed]
  9. C. J. Dibble, M. Kogan, and M. J. Solomon, "Structure and dynamics of colloidal depletion gels: Coincidence of transitions and heterogeneity," Phys. Rev. E 74,041403 (2006). [CrossRef]
  10. D. Thomann, D. R. Rines, P. K. Sorger, and G. Danuser, "Automatic fluorescent tag detection in 3D with superresolution: application to the analysis of chromosome movement," J. Microsc. 208,49-64 (2002). [CrossRef] [PubMed]
  11. O. M. Lozano and K. Otsuka, "Real-time Visual Tracker by Stream Processing," J. Sign. Process. Syst. DOI 10.1007/s11265-008-0250-2 (2008).
  12. P. J. Lu, P. A. Sims, H. Oki, J. B. Macarthur, and D. A. Weitz, "Target-locking acquisition with real-time confocal (TARC) microscopy," Opt. Express 15,8702-8712 (2007). [CrossRef] [PubMed]
  13. K. Jaqaman, D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein, S. L. Schmid, and G. Danuser, "Robust singleparticle tracking in live-cell time-lapse sequences," Nature Methods 5,695-702 (2008). [CrossRef] [PubMed]
  14. A. Serge, N. Bertaux, H. Rigneault, and D. Marguet, "Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes," Nature Methods 5,687-694 (2008). [CrossRef] [PubMed]
  15. P. J. Lu, E. Zaccarelli, F. Ciulla, A. B. Schofield, F. Sciortino, and D. A. Weitz, "Gelation of particles with shortrange attraction," Nature 453,499-504 (2008). [CrossRef] [PubMed]
  16. M. J. Saxton, "Single-particle tracking: connecting the dots," Nature Methods 5,671-672 (2008). [CrossRef] [PubMed]
  17. http://physics.nyu.edu/grierlab/software.html
  18. A. Rahman, "Correlations in the Motion of Atoms in Liquid Argon," Phys. Rev. 136,A405-A411 (1964). [CrossRef]
  19. W. K. Kegel and A. van Blaaderen, "Direct Observation of Dynamical Heterogeneities in Colloidal Hard-Sphere Suspensions," Science 287,290-293 (2000). [CrossRef] [PubMed]
  20. N. B. Simeonova, R. P. A Dullens, D. G. A. L. Aarts, V. W. A. de Villeneuve, H. N. W. Lekkerkerker, and W. K. Kegel, "Devitrification of colloidal glasses in real space," Phys. Rev. E 73,041401 (2006). [CrossRef]
  21. C. Donati, S. C. Glotzer, P. H. Poole,W. Kob, and S. J. Plimpton, "Spatial correlations of mobility and immobility in a glass-forming Lennard-Jones liquid," Phys. Rev. E. 60,3107-3119 (1999). [CrossRef]
  22. Y. Gao and M. L. Kilfoil, "Direct Imaging of Dynamical Heterogeneities near the Colloid-Gel Transition," Phys. Rev. Lett. 99,078301 (2007). [CrossRef] [PubMed]
  23. J.-P. Hansen and I. McDonald, Theory of Simple Liquids (Academic Press, London, 1986), 2nd ed.
  24. C. P. Royall, A. A. Louis, and H. Tanaka, "Measuring colloidal interactions with confocal microscopy," J. Chem. Phys. 127,044507 (2007). [CrossRef] [PubMed]
  25. G. Marty and O. Dauchot, "Subdiffusion and Cage Effect in a Sheared Granular Material," Phys. Rev. Lett. 94,015701 (2005). [CrossRef] [PubMed]
  26. S. S. Blackman and R. Popoli, "Design and Analysis of Modern Tracking Systems," (Artech House, Norwood, MA, 1999).
  27. http://plutarc.sourceforge.net/
  28. M. C. Jenkins and S. U. Egelhaaf, "Confocal microscopy of colloidal particles: Towards reliable, optimum coorinates," Adv. Colloid Interface Sci. 136,65-92 (2008). [CrossRef]
  29. A. S. Clarke and J. D. Wiley., "Numerical simulation of the dense random packing of a binary mixture of hard spheres: Amorphous metals," Phys. Rev. B 35, 7350-7356 (1987). [CrossRef]
  30. S. Wilhelm, B. Grobler, M. Gluch, and H. Heinz, Confocal laser scanning microscopy (Microscopy from Carl Zeiss)
  31. http://www.physics.mcgill.ca/ kilfoil/downloads.html
  32. K. Chen, A. Kromin, M. P. Ulmer, B.W. Wessels, and V. Backman, "Nanoparticle sizing with a resolution beyond the diffraction limit using UV light scattering spectroscopy," Optics Communications 228,1-7 (2003). [CrossRef]
  33. T. Savin and P. S. Doyle, "Static and Dynamic Errors in Particle Tracking Microrheology," Biophys. J. 88,623-638 (2005). [CrossRef]
  34. J. C. Crocker and B. D. Hoffman, "Multiple Particle Tracking and Two-Point Microrheology in Cells," Published in Methods in Cel l Biology 83, 141-178 (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited